Axiomatic Semantics Verification of a Secure Web Server

A Dissertation
Presented to the
Department of Computer Science

Brigham Young University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

(© Paul E. Black 1998
by
Paul E. Black
February 1998

This dissertation by Paul E. Black is accepted in its present form by the Depart-

ment of Computer Science of Brigham Young University as satisfying the disser-

tation requirement for the degree of Doctor of Philosophy.

Date

Phillip J. Windley, Committee Chairman

Douglas M. Campbell, Committee Member

J. Kelly Flanagan, Committee Member

William A. Barrett, Committee Member

Parris K. Egbert, Committee Member

Scott N. Woodfield, Graduate Coordinator

CONTENTS

1 Introduction

2 Related Work

2.1 Reasoning About Programs
2.1.1 Floyd
2.1.2 Hoare e
2.1.3 Dikstra
2.1.4 Gordon
215 Gurevich

2.2 Verification Condition Generators
2.2.1 Manna and Waldinger
2.2.2 Homeler e
223 Maurer.

2.3 Handling Side Effects 0oL
2.3.1 Cunningham and Gilford
2.3.2 Kowaltowski
233 Boehm
2.34 Homeler e
235 Norrish

A Secure Web Server

3.1 Design Features

3.2 Alternative Subjects oL

Approach to Verifying thttpd

4.1 Possible Verification Methods

4.2 Formal Reasoningo

4.3 Automated Formal Reasoning
4.3.1 HOL: A Theorem Proving Environment
4.3.2 Forward and Backward Proofs
4.3.3 Tactics to Expedite The Proof

4.4 Axiomatic Semantics
4.4.1 A Brief Introduction,
442 Example Inference in Axiomatic Semantics

4.5 Example Automated Proof

4.6 Limitations of Axiomatic Semantics

11

5 Inference Rules for Side Effects
5.1 Model Formality
5.2 A Rule for Preevaluation Side Effects
5.3 A Rule for Postevaluation Side Effects
5.4 Side Effects in Conditionals
5.5 Loops with Pre and Post Eval Side Effects
5.6 Other Looping Constructs and Limitations

6 Formal Descriptions and Models

6.1 Formalizing the Specification
6.1.1 Information Integrity
6.1.2 Confidentiality

6.2 Formalizing C
6.2.1 Scope of Formalization
6.2.2 Abstract Syntax Tree
6.2.3 Side Effects oo
6.2.4 Semantic Equivalence
6.2.5 Well-Formedness Conditions
6.2.6 Inference Rules for Partial Correctness
6.2.7 C and the Assertion Language

6.3 Formalizing the Unix Environment
6.3.1 The File System L.
6.3.2 Process ID and Permissions

6.4 Operating System and Library Calls
6.4.1 Nuances of Axiomatizing System Calls
6.4.2 An Assumptiono
6.4.3 A Guidebook to Formalizing System and Library Calls

7 The Proof
7.1 Proving Design Features Independently
7.2 OVErview o vt e e
7.2.1 Structureof thttpd.
7.3 Proving Confidentiality
7.3.1 logfile(D
7.3.2 LOG2 e e
7.3.3 LOGA e e
7.3.4 error()
7.3.5 cat()
7.3.6 fetch()
7.3.7 main()
7.3.8 thttpd has Confidentiality
7.4 Proving Information Integrity
7.4.1 logfile()

111

7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8

LOG4 e e
error() s,
cat() ..o,
fetch()
main()
thttpd has Information Integrity

7.5 Proving thttpd Secure

Conclusions and Future Work
8.1 Verification Results

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5

Assumption
Formal Specifications
Ill-formed Code Constructs
No Check that open() Succeeds
No Repeated Call to write()

8.2 Limitations and Restrictions

8.3 Future Work

8.3.1
8.3.2
8.3.3
8.3.4

Inference Rules L.
Numbers, Pointers, and Types
Function Calls
A Complete Verification System

8.4 Conclusions s

A Software Verification Manual
Al Verifying C Code o
A.2 Hints for Program Verification

A21
A22
A23
A24

Level of Proof
How to Prove Goals
HOL Error: Invalid Tactic
When Rewrites Don’t Work

A.3 Simple Expressions Lo

A3.1
A32
A33
A34

Assignment Expressions0
Expressions With No Effect
Side Effect Expressions L.
The Empty Statement

A.4 Statement Manipulation and Conditions

A4l
A42
A43
A4d4
A45b
A46

Replacing Statements with Semantically Equivalents

Sequence Ruleo
Precondition Strengthening
Postcondition Weakening L.
Partial Correctness Conjunction
Partial Correctness Disjunction

v

124
124
124
124
125
127
128
129
132
132
132
133
133
134

A.5 Conditional and Loop Statements 171

A.5.1 Two-armed Conditionals 171
A.5.2 One-armed Conditionals 177
A53 While Loops 180

A.6 Blocks and Functions 186
A.6.1 Blocks and Local Variables. 186
A6.2 FunctionCalls. 187
A.6.3 Verifying C Functions 193
A.6.4 Function Correctness 193
A.6.5 Function Syntactic Correctness 199

A.7 Generally Useful Tactics 202
A.7.1 Tactics to Simplify or Solve Goals 202
STRIP_THEN REWRITE_TAC 202

LIFT_ QUANT.TAC. 205

ESTABTAC. 206
INCONSIST TAC 208

SOLVE.TAC 209

A.7.2 Tactics to Handle Assumptions 210
FILTER_.UNDISCH.TAC 210

UNDISCH ALL.TAC 212

A.7.3 Arithmetic Tactics 214
ARITHTAC. o o 215
DEPTH_ARITHTAC. 215

B OS and Library Call Axioms 218
B.1 Input/Output Calls 218
B.2 Miscellaneous Operating System Calls 225
B.3 Library Calls 233
C The Secure World Wide Web Server Code 237

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
7.1
7.2

LIST OF TABLES

Lvalues and Expressions Without Side Effects
Lvalues and Expressions With No Postevaluation Side Effects

Preevaluation Side Effect Separation
Lvalues and Expressions With No Preevaluation Side Effects
Postevaluation Side Effect Separation
Semantic Equivalence of Statements
Inference Rules for Partial Correctness, Part T
Inference Rules for Partial Correctness, Part II.
Derived Partial Correctness Inference Rules
Assertion Language Typeto AST
AST Type to Assertion Language
AST Expression to Assertion Language
Confidentiality Theorems
Information Integrity Theorems

vi

5.1
5.2
5.3
5.4
7.1

LIST OF FIGURES

Informal Semantics in Shallow Embedding
Formal Semantics in Deep Embedding 28

Control Flow in a Conditional 33
Control Flow in a While Loop 36
Function Call Tree for thttpd 85

vii

CHAPTER 1

INTRODUCTION

Society is increasingly dependent on systems with computers as vital com-
ponents. The software used in systems is increasing in complexity in two ways:
systems have more components interacting with each other (more breadth) and
systems are built on top of other, preexisting systems (more depth). Since com-
puter systems are highly non-linear, an error in one part of the system may lead
to a failure in a logically (or physically!) distant part of the system. The current
state of practice in software production seems to be design, implement, and test
until it is good enough or the project runs out of time. This is increasingly unable

to deliver software of acceptable quality on an acceptable budget in many areas.

e Life critical systems: heart pacemakers, airline flight control systems, nuclear

reactor shutdown systems.

e High volume systems: a bug in the control software of a laser printer could

mean the manufacturer has to replace millions of ROMs all over the country.

e Security systems: systems connected to the Internet are potentially open to
automated break-in attempts from millions of sites all over the world. A
single break-in can be disastrous. Authentication in the core of an operating

system can be critical, too.

e Complex systems: a complicated memory management algorithm may de-
liver needed performance, but simulation is not enough to assure the design-

ers that it will work.

Formal methods help to manage this complexity, thereby increasing reliability and

productivity, by providing formal models which may be checked and compared.
From the time people began writing programs for computers, some people

have been concerned with the correctness of their programs and have advanced ar-

guments to justify trust in algorithms or programs. In 1967 Floyd [20] presented a

way to assign meaning to computer programs. Hoare introduced axiomatic seman-
tics for formal program verification in his seminal paper “An Axiomatic Approach
to Computer Programming” [30]. In the decade following, much was learned about
how to verify computer programs, how to use formal methods in the program de-
velopment process, and where difficulties arise. Manna and Waldinger’s paper [35]
is an excellent paper from that era. Since then inference rules have been developed
for function calls [23], non-local branching [1], distributed [26] programs, functional
programs [12], etc. Many of these were developed for simple, invented languages
to clearly demonstrate a principle with a minimum of distracting detail.

Dijkstra ([17], pp. 56-57) advocates that code should be designed for clear
verification even if that makes failure characteristics worse. However the most
reliable systems are built with experience and conservative, almost pessimistic or
even redundant, design. Formal methods do not provide guidance about what to
build: only how to build it. Thus formal methods are an adjunct to experienced
design. Formal methods consists of three parts: formal models, formal require-
ments, and formal means to relate the two (verification or proof, synthesis, etc.)
[5]. Formal models can help development by unambiguously capturing the design,
that is recording details precisely. Verification helps by insuring that the model
of an implementation matches the requirements with no overlooked cases, no false
analogies, or any hidden assumptions.

However not much code is formally verified today. Formal verification is
often rejected as being impractical for “real code,” as not applying to the real
situations, or as not really helping during software development. De Millo, Lipton,

and Perlis (speaking of manually reviewed verifications) said [15],

[we believe] in the basic impossibility of verifying any system large

enough and flexible enough to do any real-world task.

Thesis Statement

Computer-assisted, post-hoc formal verification can be applied to useful,
production code written in real languages. Many people consider formal verifica-
tion to be of little or no value for existing code and inapplicable to real code and

real languages because of complications such as the following:

1. If expressions can have side effects (especially function calls), and semantics

for a single expression can be arbitrarily complex.
2. Program constructs may have multiple exit points.

3. Using arrays, especially without language-defined bounds checks, has the

potential to overwrite memory.

4. Behavior based on I/O operations must be specified with more complicated

functions, instead of being able to use mathematics.

5. Operating system calls and library functions, especially those in Unix, have

very complex behavior. Some are essentially nondeterministic.

6. Concepts such as security, integrity, and confinement must be formalized for

Unix.
7. The Unix file systems and process attributes must be formally modeled.

We claim that that our formal verification of a secure HTTP (“web”) server, which
has all the complications noted above, tends to refute those concerns. We further
show that the verification yielded insights into and improved our understanding of
code, such as clarifying specifications and exposing assumptions.

In Chapter 2 we show how this work has grown from and differs from
related work. Chapter 5 explains in detail our new approach which allows us to
reason about expressions with side effects. We detail our formalization of C, Unix,
inference rules, security properties, etc. in Chapter 6 pointing out areas we have
not covered. The proof of security of the secure web server, thttpd, is outlined in
Chapter 7, and we present our results, observations, and conclusions in Chapter 8.
Appendix A is a software verification manual and documentation of the support
code we used in the proof. Appendix C is the complete code of the secure web

SErVer.

CHAPTER 2

RELATED WORK

This dissertation builds on and is related to decades of work by many people.
Their work may be divided, with some overlap, into three parts. Section 2.1
describes work on formalizing software semantics and proving theorems about code
and algorithms. Section 2.2 relates a complimentary approach of automatically
extracting the theorems needed to prove program correctness. Finally sec. 2.3
refers to work on expressions with side effects.

Here we need to introduce some notation. As is typical, we represent an

inference rule as

= Hy

- H,
=C

This means if all of the hypotheses Hi,..., H, are true, one can conclude - C.

Any number of hypotheses may qualify one conclusion. Note that an axiom may
be stated as an inference rule with no hypotheses, that is, a conclusion which is

always true.

2.1 Reasoning About Programs
2.1.1 Floyd

In 1967 Floyd reported on a method to formally infer the correctness of
programs. The method represents a program as a directed graph. Program state-
ments are vertices, and possible control transfers are edges. Statements may
have many multiple entries and exits. Predicates representing correctness con-
ditions are attached to the edges. The semantic definition of a command ¢ with
k incoming or “entry” arcs and [exit arcs is a verification condition function,
Vo(Py, ..., P, Q1,...,Q:) where P; is the predicate on the +*® entry and @Q; is the

predicate on the 5 exit.

Floyd defines consistency and completeness for verification condition func-
tions (V.’s) and gives theorems about combining V.’s which any set of inference
rules for programs must obey. An example shows semantic definitions for re-
stricted assignment, conditional, and other statements. The paper also defines the
strongest verifiable proposition for an edge, the strongest verifiable consequence,
etc., and shows how to prove termination.

Although the representation of programs as graphs may seem unnecessarily
general in the day of structured programming, it may still be applicable. With
exceptions and return and break statements, large applications are rarely purely

structured.

2.1.2 Hoare

In a landmark paper in 1969 Hoare described a system of using axioms to
assign meaning to programs [30]. The paper draws an analogy between this “ax-
iomatic semantics” and axioms of arithmetic, and gives axioms (or axioms schemas)
for assignment, consequence (pre-condition strengthening and post-condition weak-
ening), sequence, and iteration (“while” loops) in a simple language. The language
excludes side effects and procedure calls.

The paper also mentions the need to consider termination, but gives no
guidance on how this might be done. Hoare spends considerable time arguing for
the use of correctness proofs for reliability and formal specifications for documen-

tation and portability. In spite of this, he recognizes that more work was needed

(30, p. 579]:

The practice of supplying proofs for nontrivial programs will not be-
come widespread until considerably more powerful proof techniques

become available, and even then will not be easy.

2.1.3 Dijkstra

Dijkstra proposed constructing programs by simultaneously deriving and
verifying them from the termination condition rather than the “verification after-

ward” orientation of Floyd and of Hoare. His 1976 book [17] explains how to use

his weakest precondition (wp) algebra and a simple nondeterministic specification
language to develop software.

This “correct by construction” philosophy is seen today in such things as
the Cleanroom Approach [18] and the SPARK Approach [4, p. vii]. The general
scheme of computing some form of a weakest precondition from a statement and

its postcondition is still often proposed as the bases of software verification.

2.1.4 Gordon

In 1989 Gordon embedded Hoare’s axiomatic semantics for a simple lan-
guage in HOL. The simple language did not have complicating features such as
side effects or procedures calls. The package is called “prog_logic,” and implements
many of the concepts described in [21] about proofs, devising inference rules, and
a verification condition generator.

Gordon’s embedding is the foundation of axiomatic semantics in HOL upon
which many extensions and applications to new situations are based. Although
the book is oriented to manual correctness proofs, it is an excellent guide to imple-
menting fundamental inference rules. It also discusses many of the subtle problems

which may arise such as inconsistent or incomplete rules.

2.1.5 Gurevich

Gurevich presented [24] a new abstraction, similar to an operational se-
mantics, called “evolving algebras” or “abstract state machines,” in 1993. These
descriptions can rather naturally describe many of the complex semantics of lan-
guages such as C.

The abstract state machines representation has been applied to many prob-

lems including software, hardware, protocols, and real-time systems.

2.2 Verification Condition Generators
2.2.1 Manna and Waldinger

In the late 1970’s Manna and Waldinger, along with Levitt and Katz, imple-
mented Floyd’s method of generating verification conditions and extended it with

code which proves most of the conditions automatically [34]. They also showed

how many loop invariants can be generated automatically. Invariants are gener-
ated by one of two approaches: algorithmic, which generates invariants which are
certainly true, but may not be sufficient, and heuristic, which generates invariants
which may be helpful, but must be checked to see if they are true.

This work concentrates mostly on automating software verification as much
as possible. Obviously, the more automated a verification system is, the more

widely acceptable it is.

2.2.2 Homeier

In his 1995 Ph.D. dissertation, Homeier [32] began with an operational
semantics of a highly simplified version of C. He then proved the correctness of an
axiomatic semantics and several inference rules including new rules for function
calls (including mutually recursive functions) and for instantiations of theorems
about them. His inference rules also handle an operator with a simple side effect.
He clearly explains the need to have separate assertion and programming languages
and formalizes an embedding of programming language constructs in the assertion
language.

From that formalization he wrote and verified a verification condition gen-
erator. Given a piece of code annotated with assertions at key points, a verification
generator derives the set of theorems and implications which must be proved to
prove the code correct. This approach has the advantage that the user need not be
concerned with inference rules for each programming construct, such as assignment
statements, loops, and function calls.

This work is noteworthy particularly for the following reasons.

1. The axiomatic semantics are proven correct from an operational (definitional)

semantics.

2. The verification addresses some difficult constructs, such as mutually recur-

sive functions.

3. The verification condition generator is proven correct.

2.2.3 Maurer

W. Douglas Maurer developed the Join-Point Method, a derivative of Floyd’s
inductive assertion method. In a 1996 paper [36], Maurer reports on an operational
semantics of C and a verification condition generator based upon the theory. He
proved that conditions only have to be established and proved at a number of “join
points” in the execution graph of a program. All other conditions can be derived
and checked completely automatically.

Maurer’s on-going work continues to develop practical means of verifying
production programs written in production languages. The verification is highly

automated, too.

2.3 Handling Side Effects

One of the semantically difficult features which appears early and often in
software verification is handling expressions which have side effects. This section

reviews work on reasoning about languages with side effects.

2.3.1 Cunningham and Gilford

In [13] Cunningham and Gilford show how side effects in expressions can

be handled by

1. Introducing an axiom schema for the result of evaluating a simple variable
or constant, P {z} P A ® = z, where ® is the meaning of the expression and

cannot appear in P.

2. Giving rules to infer the correctness of, say, assignment statements from
simpler rules. For instance, when the right hand side of an assignment is

evaluated first, the rule is

P{z}QN® =u, Q{y}RyA® =y
P{z — y}R

where u is a reference to z, and

3. Providing an inference rule schema for functions with any number of param-

eters.

The example inference rules assume that the order of evaluation of pieces
of expressions is defined. They did not show how their approach could be applied

to control statements such as conditionals or loops.

2.3.2 Kowaltowski

Kowaltowski gives [33] another method of reasoning about side effects in
axiomatic semantics using unique variables to maintain intermediate results. He
presents inference rules for simple variables and constants, assignments, unary and
binary operators, conditional statements, and iterative statements (while loops).

The assignment rule is
P{E}Q;
P{z := E}Q
where o is a distinguished variable which is the result of computing expression E.
Cunningham and Gilford’s rules allow for side effects in the “left hand side”

of assignments, while Kowaltowski allows for relations other than equality between

the result-carrying variable (® or o) and other variables and constants.

2.3.3 Boehm

In [9] Boehm presents a logic which deals quite easily with side effects and
aliasing. The formalization is similar to a denotational semantics in that the value
of a programming expression can be transformed into a mathematical expression.
Additionally inference rules allow one to reason directly about programming ex-
pressions like Dijkstra’s weakest precondition calculus [17]. The logic maintains a
strict separation between the assertion language and the programming language.

The logic deals with side effects and aliasing by having separate inference
rules for the result value of an expression (“value” rules) and the effect of the
expression on the state (“effect” rules). For instance, the value axiom for a boolean
operator is

<aPb>=<a>O<a;b>

That is given an operator @, the value of a & b is the value of a “combined with”

(&) the value of b after a is executed. The effect axiom is

<adb>t=<a;b>t

That is, the effect of a & b on state ¢ is the effect of a then b on state .
Since the logic defines the value of an expression in a state, it does have

difficulty accommodating nondeterminism or concurrency.

2.3.4 Homeiler

Homeier’s work is mentioned in this section as well as the preceding section
on verification condition generators. His language has an increment operator which
has a side effect. The inference rules handle side effects by separately representing
the value of an expression and its effect on the state.

The effect and “timing” of the increment operator is explicitly represented
in the rules. It is not clear how this approach could be generalized to, say, user-

defined functions with side effects.

2.3.5 Norrish

Norrish developed a nearly-complete model of the C language, called Cholera.
This is an operational semantics model and is detailed in a 1997 report [38]. Nor-
rish plans to prove an axiomatic semantics from this model and use a combined

Cholera and axiomatic semantics system to verify software.

10

CHAPTER 3

A SECURE WEB SERVER

The subject of this study is a secure World Wide Web server called thttpd’.
Much of this section comes from [7] and [11].

In June 1995, Management Analytics wrote a secure World Wide Web server
called thttpd and gave thorough, though informal, specifications of security. The
code consists of about 100 lines of C. Their

...solution to the security problem with servers is to design a secure

server with security properties that can be explicitly demonstrated.
They list the general properties of interest as

e information integrity (no information on the server can be corrupted by out-

side users),
e availability of service (outside users cannot deny services to other users), and

e confidentiality (the server only provides information which is explicitly au-

thorized for outside access).

3.1 Design Features
To assure these properties, they use the following design features.

e Small Size, so it is feasible to thoroughly examine for security properties,

o Confinement of Operating Privileges, using the Unix command setuid to

run as a non-privileged user (named “www”) so

... the basic operating system protection features (e.g., access con-
trol, process separation, limited input and output capabilities) that
are used by millions of people every day are used to protect the
server . ..

Tt is named for HTTP, the HyperText Transfer Protocol, which is used for WWW transfers
on the Internet. HTTP is similar to FTP, but is enhanced for Web interaction.

11

o Confinement of File System Access, using the Unix command chroot to

avoid access to sensitive or special files, such as password or device files,
o Confinement of File Output, by only writing to a single, predefined log file,

e Confinement of Information Flow, by reading only one fixed size request from

the user,

e Confinement of File Inputs, by only opening files which are owned by “www”

and “world” readable.

They used proven technology (Unix and C) as a good base to provide a
secure server. They felt this makes the server more portable than if it were imple-
mented in, say, SPARK [4]. Also C compilers and Unix operating systems have had
extensive operational experience, for more “real world” testing than seldom-used
or invented systems have.

The redundant confinements give defense in depth. That is, it is unlikely
that any one service or library call failure will comprise the security. The redun-
dancy also makes the server resistant to inevitable operator errors.

After having been examined by dozens of people on the network, having
run on the Internet for over a year, and being subjected to hundreds of thousands
of unfriendly attack, no flaw has been found.

We feel this would be a good test subject for verification: small, unlikely to
have gross errors, written for real use, but having many complications ignored in

other work.

3.2 Alternative Subjects

Why get mired in the ugliness of an old, semantically complex language
like C at all? Why not invent or use a clean language? Actual programs must be
implemented to be used, and therefore depend on actual compilers and libraries,
not models. Although a simple, invented language may be easier to verify, it
cannot be as widely known or its compiler as widely available as a commercial
language, such as C. Short of verifying the compiler, a commercial compiler is
probably more reliable than a compiler for a novel language. Additionally verifying

an actual program written in a commonly-used language raises interesting issues

12

which are often avoided by definition or never even come to light with simple,
invented languages.

Why not use a simple example program, one written to be easy to formally
verify, instead of a production program? Programs must be engineered with re-
dundancy in order to not fail in the presence of the inevitably failure in the library
functions, operating system, or hardware. In spite of being thoroughly checked
and tested, thttpd would be even more trusted after a formal verification which
yields additional considerations. The web server was written to be quite simple,

so we believe it is a good candidate for formal verification.

13

CHAPTER 4

APPROACH TO VERIFYING THTTPD

The final goal of verification must be to improve the software production
process. In our opinion, the best general way to develop software today is using a
modified Cleanroom method. This method is based on incremental development,
verification by inspection at each increment, and testing for statistical properties
rather than testing to debug [18]. In our case, we are interested in code which
already exists, so we will use post-hoc verification instead. Not everyone can de-
velop code from scratch in such a productive environment, so post-hoc verification
is still useful. Additionally the Cleanroom method can only be fully applied when
a complete and rather formal specification is available. In contrast post-hoc verifi-
cation allows us to formally verify just certain critical properties while engineering
those which are less critical.

After one has chosen post-hoc verification one can still ask what should be

verified for high level code. Curzon [14] noted several different possibilities.

e One could compile high level (source) code into low level (assembler) code,

and verify the low level code.

e One could verify the high level code, compile it, then prove a correspondence

between the low and high level codes.

e One could verify the high level code and verify the compiler, i.e., that in

every case the low level code it produces implements the high level code.

Curzon choose the third possibility and presented a verified compiler. We will
not concern ourselves with a correct compilation or execution of C code. First,
compilers and hardware are usually reliable, and well engineered software should
minimize any possible exposure from lower-level failures. Second, one would have
to verify each compiler and hardware implementation separately. Finally and most
importantly, we can formalize parts of the ANSI C standard, not a particular

compiler’s implementation or hardware’s execution.

14

We must choose a method of verification and model of computation, a
verification support system which can support it, and some approach to formalize

the specification.

4.1 DPossible Verification Methods

Software is usually verified either by model checking or theorem proving.
Model checkers explicitly compare the input/output mappings of two functions.
In the simplest form, one may wish to decide if two boolean expressions were
the same. One might generate and compare the truth tables for each expression.
If they match, the functions are the same. Model checking takes this approach
while exploiting symmetries and special conditions to reduce the actual number of
cases checked. Model checking is appealing since it is decidable, that is, there are
efficient, highly automated algorithms for proving correctness. With sophisticated
programs, models as large as 10%° states have been checked [10].

One particular model which has been used to check security is that of Bell
and LaPadula. It defines the idea of a “secure state” and possible transitions from
state to state. Checking that all transitions from reachable secure states are to
other secure states leads inductively to a proof that the system is secure.

Formal verification can only show the truth or falsity of propositions about
models. Since we are limited by laziness (it isn’t worth modeling everything which
could conceivably happen), theoretical ignorance (we don’t know everything), or
practical ignorance (we haven’t examined everything) [42] in modeling the real
world, our models will never exactly correspond to every facet of reality. Because
of this we must use probabilistic reasoning, such as fault trees or mean time to
failure analysis, if we wished to assure ourselves that the code is good enough even
though our components are not perfect.

Theorem proving approaches verification by formalizing [5]
e a model of computation,
e the specification, and

e rules of inference.

15

The model of computation dictates the axioms, that is, what the effect of atomic
executions are. The rules of inference allow us to deduce theorems about larger
pieces of code from axioms and previously proven theorems. The verification is

then proving that (the model of) the implementation satisfies the specification.

4.2 Formal Reasoning

There are many models of computation: denotational semantics, opera-
tional semantics, abstract state machines [24], axiomatic semantics [30], etc. The
first three models are definitional, that is, new predicates, functions, concepts, etc.
are added by defining them in terms of existing relationships or concepts. The ad-
vantage is that the logic cannot be made inconsistent by adding definitions. Also
language models are often closer to human understanding of semantics, and thus
easier to validate and more likely to be correct. For example, it is relatively clear
to define the effect of an assignment statement as a formal version of something
like “A = B + C; means ‘add the contents of B to the contents of C and put the
result in A’.”

Axiomatic semantics can introduce inconsistencies in the logic through the
axioms added. In addition, the axioms may not be very intuitive and therefore
harder to validate and get correct. For instance, the axiom (schema) for simple
assignment statements is - {Qg,;,} v = expr; {Q}. The notation QF,,, denotes Q
with all free occurrences of v replaced by expr. See Sect. 4.4 for more detail.

The definitional semantics tends to develop a complete description of the
behavior of a piece of code. Axiomatic semantics allows reasoning about just
particular properties. For instance, if we are only interested in proving that the
code maintains confidentiality, we need only reason about confidentiality and the
behaviors which influence it. A definitional semantics approach would tend to
generate the entire behavior, in some formalization, which must then be examined

altogether to prove confidentiality.

4.3 Automated Formal Reasoning

Practically speaking, we need a significant degree of automation to handle

the multitude of trivial details associated with applying inference rules. As the

16

example in Sect. 4.4.2 shows, even simple proofs can be complicated. Complex

inference rules, such as those introduced in Chap. 5, and lengthy conditions aggra-

vate the problem. Fortunately much of the detail can be handled automatically.
The amount of automation can vary. The least automated approach is a

proof checker. A proof checker takes

e axioms, theorems, and rules of inference, and

e a proof, or list of inference steps,

and verifies that each step is a valid application of the inference rules. Although
it reduces the chance of error in a manually derived proof, a checker provides no
help in finding a proof.

On the opposite end of the automation spectrum would be a fully automated
theorem prover. Given a formal logic and the formal description of a property of
interest, it would return “true” or “unproven” depending on whether it could
be proven or not. Hopefully if it could not prove the property, it would give
some guidance about how much it could prove or what it could not prove. In
simpler logics, such as first order logic, this is practical. But it can be difficult or
impossible to represent some interesting properties in simple logics. On the other
hand a program which handles higher order logics and proves (nearly) all theorems
presented to it is well beyond our current ability to create.

Nevertheless formalizing properties and models and proving theorems about
them can be as enlightening as, and perhaps more useful in the long run than,
an oracular “true” or “false.” Also a significant level of automation is feasible.
A theorem proving assistant can make sure that rules of inference are validly
applied, keep track of goals and which theorems have or have not been proved,
and can prove simpler theorems or inferences automatically. Once the model of
computation is chosen, one must then choose a theorem proving assistant to use
and logic in which to embed it. Some choices are Coq, Nuprl, PVS [39], HOL [22],
or a special purpose program. Coq uses constructive (or “intuitionistic”) logic,
while Nuprl, PVS, and HOL use classical logic. If one chooses a specially written
theorem proving assistant program, it must be written and validated. Since one
of the assistant’s main values is preventing logical errors, bugs in the logic of the

assistant can be very damaging.

17

We were initially inclined to use HOL because we were familiar with it,
we knew it could handle large proofs, and it was available!. Also it never had
programming errors which led to incorrect proofs and has a very large user com-

munity. Since there was no compelling reason to change, we decided to do our

work in HOL.

4.3.1 HOL: A Theorem Proving Environment

HOL is a theorem proving assistant which allows classical reasoning in
higher order logic. It is probably the most mature theorem prover and has the
largest user community. All theorems are derived directly or indirectly from five
axioms and eight inference rules in a classical logic. The level of automation is
relatively low: although simple inferences are proven automatically by built-in
routines, the user must do a lot of the thought work directing which tactics and
inferences to use at what time in a typical proof.

The user can easily extend the HOL environment. Since most extensions
are implemented by adding new definitions, no inconsistencies can be introduced.

(The user can declare theorems axiomatically, but this is discouraged.)

4.3.2 Forward and Backward Proofs

The programming language associated with HOL is SML [40]. Two styles
of proofs are supported by the HOL environment: forward proofs and backward
proofs. Forward proofs proceed from known axioms, definitions, and theorems by
inference rules to the theorems which are the final goal. This is the style most
often used in introductory mathematical text and geometric proofs.

Backward proofs begin by declaring the goal to be proved. The user then
invokes “tactics” to break the goal into (hopefully) simpler subgoals. To be ac-
cepted by the backward proof system, each tactic must be justified with inference
rules which would prove the goal given the subgoals. For instance, the conjunction
inference rules says that if two propositions, P and () are theorems, their conjunc-
tion, P A @ is a theorem. The tactic CONJ_TAC says that one may prove a goal
of the form P A @ by proving the subgoals P and). As each tactic is invoked

Lfor free.

18

by the user, its justifying inference rule is recorded. When all subgoals have been
completely proven, the subgoal package automatically executes all the inference
rules to produce a theorem corresponding to the original goal.

We find the backward proof much easier. The user declares the initial goal,
then works on breaking the goal down into simpler subgoals. The subgoal package
and tactics keeps track of the many, tiny details such as what must be proved
to justify an inference, variable renaming, universal or existential quantification,
etc. Because of HOL’s security, the user need have little concern about thinking

through the entire proof from the beginning.

4.3.3 Tactics to Expedite The Proof

Rather than tediously executing each inference step, larger steps can be
packaged into “tactics.” A tactic is a small program which examines the current
goal and applies particular primitive inference rules, pre-proved theorems, or other
tactics. The underlying inference engine in HOL guarantees that each step is,
indeed valid. Therefore an error in a tactic merely fails to do what was desired,
and never results in an invalid inference.

These tactics or small programs prove simple theorems or advance the proof
in specific ways. For instance, many assignment statements can be handled quite
mechanically, and verifying a while loop always consists of forming the following

subgoals.

1. Any side effects in the while condition establish an interim condition from

the invariant.

2. The body of the loop reestablishes the invariant from the interim condition

and the success of the test.

3. The invariant and the negation of the test imply the postcondition.

Tactics form a custom, higher level theorem proving language which is still as
trustworthy as the underlying program. Just as judiciously designed subroutines
make writing (or changing) the top level of a program easier, tactics make proofs
much more succinct and easier to do. When there are many good tactics, common

situations are handled automatically and the proof proceeds faster.

19

4.4 Axiomatic Semantics

We chose an axiomatic semantics to model the implementation language,
C, of thttpd and to encode rules of inference. This section introduces a convention
we use, gives a brief introduction to axiomatic semantics and the syntax we use to
represent it, and gives an example. Finally we point out the kinds of errors which
may arise using axiomatic semantics and how to address them.

The syntax
HA

means that A is a theorem. We use the HOL convention that all free variables are
assumed to be universally quantified. Variables may range over functions as well
as simple types, and function application is implicit. Thus - Pz means “for all P

and z, P(z) is true.”

4.4.1 A Brief Introduction

From [7] there are two main types of statements in axiomatic semantics:
partial correctness and total correctness. An axiomatic statement of partial cor-
rectness is

I {Precondition} Code {Postcondition}

where Precondition and Postcondition are predicates on the state of the com-
putation and Code is a fragment of code. The above means if Code is executed in a
state which satisfies Precondition, then when it terminates, Postcondition will
be true. In this case, “terminates” means that the code doesn’t loop indefinitely

or abort abnormally. For example,

F{y=3}x=y;{z =3}

Although we do not use it, a statement of total correctness is similar, but
asserts that the computation always terminates, too. When we have nonstructured
jumps, like return or continue statements or the exit() function in C, total
correctness must also show reachability, or that execution may reach the code.
The syntax for total correctness uses square brackets ([and]) instead of curly

braces ({ and }). For instance, the above assignment always terminates, so we can

20

prove the stronger

Fly=3lzx=y; [z =3

The axiom (or actually, axiom schema) for C assignment statements of the

form v = expr; is the following:

- {Qexpz}t v = expr; {Q} (4.1)

as long as expr doesn’t have any side effects [21, pp. 15-17] and v is not an alias

v
expr

of v replaced by expr. For instance, (gx (h+ 1))(gi_1) is ((i-1)*(h+1)). The

for any variable in Q or expr. The notation Q means Q with all free occurrences

v

expr 18 true, then when the assignment is done, Q is

assignment axiom means, if Q
true.

Inference rules for axiomatic semantics have hypotheses and conclusions.
For example, Equation 4.2 is the inference rule for sequential statements. It states
that if executing sl in state P establishes state R and executing s2 in R establishes

(), we can conclude that executing s1;s2 in state P establishes Q).

F{P} sl {R}
- {R} s2 {Q}
F{P} s1;s2 {Q}

4.4.2 Example Inference in Axiomatic Semantics

Suppose we want to prove that the following code swaps the values of x and

y. (This doesn’t work if x and y are aliases.)

X =Xx + ¥
=X -Y9;
=X -9;

or more formally, we wish to prove
Flr=XAy=Dlx=x+yy=x-yx=x—y; {x=VAy=4a}

where we use the assertion language variables X and) to represent the initial
values of x and y respectively. We use a backward proof, that is, proceeding from

the goal to axioms or theorems by inference rules.

21

We instantiate the sequence rule 4.2 to get
F{ix=XAy=V}zx=x+y;7y=x—y; {x=X+YAy=21}

F{ix=X+YAy=X}z=x—y;{x=YVAy=4}
Flr=XAy=Dlx=x+yy=x-y x=x—y; {x=VAy=4a}

In other words, we can conclude the goal if we can prove
F{x=XAy=V}lx=x+y;y=x—y; {x=X+YAy= 4}

(which we will refer to as subgoal 1) and
Fix=X+YVAy=X}zx=x—-y;{x=VYAy=4}

(subgoal 2).

The assignment axiom 4.1 gives us the theorem

F{x=YAy=X);i tx=x-y {x=VAy=4X}

which simplifies to
F{ix—y=YAy=X}zx=x—-y;{x=)YAy=2X}

by the definition of replacement, and then
F{x=Y+yAy=X}zx=x—y;{zx=YANy=2X}

using standard algebraic laws on the precondition. Because computer arithmetic is
finite, the usual laws of arithmetic and algebra don’t strictly hold. Since overflow
is rarely? a problem, we model computer arithmetic as arithmetic on integers.
Modeling real numbers is even more complex. Since y = X, the above proves
subgoal 2.

We can instantiate the sequence rule again to prove subgoal 1.

F{x=XAy=D}lx=x+y, {x=X+VAy=DV}
F{x=X+VAy=D}y=x-y{x=X+VAy=4}
F{ix=XAy=V}zx=x+y;y=x—y; {x=X+YAy=21}
2Quantifying “rarely” is a prime example of the need for design and engineering trade-offs we

alluded to in the Introduction, page 2, and Chapter 3, page 11. In fact, overflow caused the loss
of the first Ariane 5 rocket [3, 2].

22

Now we need to prove F {x =X Ay=YV}zx=x+y; {x=X+ YV Ay= Y} (sub-
goal 1. and F {x=X+YVAy=YV}y=x—y; {x=X+ YV Ay= X} (subgoal
1.2).

Subgoal 1.2 can be proved starting with

F{r=X+VAy=X) }y=x—-y; {x=X+VAy=X}
by the assignment rule, then
Fix=X+VAzx—y=X}y=x—y; {x=X+YVAy=21}
by the definition of replacement, and finally
Fix=X+VAy=X4+)Y-X}y=x—y;{zx=X+YANy=4}

by algebra.
Subgoal 1.1 can be proved with

F{x=X+YAy=))iytz=x+y; {x=X+IVAy=D}
by the assignment rule, then
F{x4+y=X+IYAy=V}z=x+y;{zx=X+VAy=)}

by the definition of replacement.

4.5 Example Automated Proof

Lest the reader despair because of all the work and details needed to for-
mally verify software, we show how the preceding example is automated using HOL
and tactics we wrote.

Variables which are only in the assertion language (so-called “logical” vari-
ables) have names beginning with a caret (") after Homeier. Unfortunately for
clarity, HOL uses a caret for antiquotation, so we define the names separately

4

(as logX and logY with type “:num” for natural numbers) to include them using

antiquotation. The HOL prompt is a hyphen (-), and commands end with a semi-
colon (;). We represent HOL types in this dissertation with a colon (:) and the

»

type name. The value of the result follows “val name =" after the command.

23

- val logX = mk_var{Name=""X", Ty = :num};
val logX = (--‘"X‘--) :term
- val logY = mk_var{Name=""Y", Ty = :num};

val logY = (--¢"Y‘--) :term

Next we set a goal with the function g. The predicate Partial expresses
partial correctness. Code is embedded in HOL as abstract syntax trees (see
Sect. 6.2.2, page 47 for details). Briefly variables consist of a Var constructor,

the variable name, a disambiguator (for scoping), and the C type.

- g(‘Partial ((x="1logX)/\(y="logY))
(Seq
(Simple
(Assign(Vref(Var "x" 0 Int))
(Binary (Lval(Vref(Var "x" 0 Int)))
Add (Lval(Vref(Var "y" 0 Int))))))
(Seq
(Simple
(Assign(Vref (Var "y" 0 Int))
(Binary (Lval(Vref(Var "x" 0 Int)))
Sub (Lval(Vref(Var "y" 0 Int))))))
(Simple
(Assign(Vref (Var "x" 0 Int))
(Binary (Lval(Vref(Var "x" 0 Int)))
Sub (Lval(Vref(Var "y" 0 Int))))))))
((y="1logX)/\(x="logY))‘);
val it =
Status: 1 proof.
1. Incomplete:
Initial goal:
(--‘Partial ((x = "X) /\ (y = "Y))
(Seq
(Simple

24

(Assign (Vref (Var "x" 0 Int))
(Binary (Lval (Vref (Var "x" O Int))) Add
(Lval (Vref (Var "y" 0 Int))))))
(Seq
(Simple
(Assign (Vref (Var "y" 0 Int))
(Binary (Lval (Vref (Var "x" O Int))) Sub
(Lval (Vref (Var "y" 0 Int))))))
(Simple
(Assign (Vref (Var "x" 0 Int))
(Binary (Lval (Vref (Var "x" 0 Int))) Sub
(Lval (Vref (Var "y" 0 Int))))))))
((y ="X) /\ (x="Y))--)

The goal is solved automatically by repeatedly applying the tactic
SEQ_ASSIGN_TAC. Each application of the tactic

1. separates the last statement from the sequence, if necessary, deriving an

intermediate predicate from the postcondition, and

2. proves the last statement using the assignment rule.

- e(REPEAT SEQ_ASSIGN_TAC);
0K..
val it =
Initial goal proved.
|- Partial ((x = "X) /\ (y = "Y))
(Seq
(Simple
(Assign (Vref (Var "x" 0 Int))
(Binary (Lval (Vref (Var "x" 0 Int))) Add
(Lval (Vref (Var "y" 0 Int))))))
(Seq
(Simple
(Assign (Vref (Var "y" 0 Int))

25

(Binary (Lval (Vref (Var "x" O Int))) Sub
(Lval (Vref (Var "y" 0 Int))))))
(Simple
(Assign (Vref (Var "x" 0 Int))
(Binary (Lval (Vref (Var "x" 0 Int))) Sub
(Lval (Vref (Var "y" 0 Int))))))))
((y = °X) /\ (x ="Y))

4.6 Limitations of Axiomatic Semantics

Although axiomatic semantics is a high level, powerful means of reasoning
about programs, it is open to a significant problem. Since inference rules and the-
orems about individual statements are introduced as axioms, the collection may
be inconsistent. An inconsistency could allow us to conclude an absurd statement
of partial correctness, such as - {T} x = 1; {x = 2}. In addition the form of ax-
iomatic semantics makes it hard to be sure that a certain axiomatic semantics
correctly reflects the language semantics. We especially point out that many dif-
ferent inference rules for procedures calls have been proposed through the years
correcting limitations and inaccuracies of previous rules.

A good way to address both consistency and correctness problems is to be-
gin with a lower level, definitional description such as operational semantics [38] or
abstract state machines [24], then prove the axiomatic semantics from that. Both
Norrish [37] and Homeier [32] began with operational semantics and built the ax-
iomatic semantics on that base. Low level descriptions are more obviously related
to the languages and handle complexities as side effects more cleanly. Therefore
they are more likely to be correct than a higher level axiomatic semantics. Since
they are definitional, they cannot introduce inconsistencies. An axiomatic seman-
tics proved from a low level semantics is more likely to be correct and consistent.

We feel that the time and effort of this level of detail is not justified in this

dissertation.

26

CHAPTER 5

INFERENCE RULES FOR SIDE EFFECTS

In Chap. 2 we saw that historically there have been two general approaches
to handling programming languages whose statements may have side effects. The
first is to separate theorems about the effect of statements on the program state
from theorems about the result value of expressions or statements [9, 24, 32].
These semantics are similar to denotational or operational semantics and handle
side effects quite easily.

The other approach is to analyze the subexpressions which cause side effects
separately from the original expression and use unique variables which carry the
result of side effects [13, 33]. Our approach is similar to these. In this chapter
we show inference rules for handling side effects in various C statements such
as assignments, conditionals, and loops. Our general approach can be used to
create axiomatic semantics for other statements or languages with side effects in
expressions.

Early versions of parts of this chapter are in [8].

5.1 Model Formality

Before presenting the inference rules, we must remind the reader of some
concepts of formality. The real world, in which we actually run software, is incred-
ibly complex. Effects which may influence what software actually does when it
runs extend from a squirrel in the next state knocking out power to alpha particles
flipping bits in memory, from a bug in the compiler to timing differences due to
multitasking. We use models in order to formally reason about systems. Generally,
the more accurate the model, the harder it is to reason about since more detail is
included.

When reasoning about software, we speak of embedding the programming
language in a formal system. The “depth” of embedding is a somewhat objective
measure of how much detail is carried into the formal system. Another way to

look at it is to consider how the semantic gap between a computer program and

27

a formal representation is bridged. If most of the translation or bridging is done
informally, as in Figure 5.1, it is a “shallow embedding.” A “deep embedding” has

most of the conversion specified formally, as in Figure 5.2.

formal
system

source convert

Figure 5.1: Informal Semantics in Shallow Embedding

Consider a piece of C code such as
if (x) x -= y;

A shallow embedding would have a conversion program which yields some equiv-
alent formal representation, say z # 0 = 2’ = z — y. We can reason about the
formal statement using preexisting inference rules such as modus ponens or those
for arithmetic. But we must simply trust that our reasoning applies to the original
code. Notice that the informal program embodies, for instance, the C rule that
any non-zero value is treated as true and the meaning of the operator -=. There
may be errors in the conversion, but we can’t examine whether there are errors
within this formal system. (We could, of course, verify the conversion program

separately to assure ourselves that it will not mask bugs in source code.)

source convert

system

rules

Figure 5.2: Formal Semantics in Deep Embedding

In a deep embedding, little translation is done informally or outside the

formal system. For instance the above piece of C code might be rendered in an

28

abstract syntax form like this.

If (Var "x” Int)
(Simple (SubAssign (Var ”x” Int) (Var ”y” Int)))

The meaning of the piece of code is derived by associating form or syntax with
semantics by formally defined rules in addition to those given in the formal system.
For instance, a formal rule defines that expressions of the form [— =r are equivalent
tol=101—r.

With shallow embedding we can prove that z = 0; and z = z-z; have
the same effect, namely, that z is assigned the value 0 regardless of its previous
value. However we cannot prove that for all variables v the expressions v= 0;
and v=v—wv; have the same effect. In contrast a deep embedding has the tools
to prove that for all variables v the expressions Assign v (Const 0 Int) and
Assign v (Binary v Sub v) have the same effect.

Although an embedding may generally be said to be shallow or deep, there
are many variations. For instance, an otherwise “shallow” embedding may repre-
sent function calls syntactically and have inference rules associated with them. A
nominally “deep” embedding probably parses informally (a “shallow” embedding
of the syntax) rather than carrying strings of characters and describing lexical
analysis formally. If we wanted to reason about machine language programs which
modify their instructions at run time, we could not even use syntactic abstraction:
we would have to model uninterpreted memory contents. So the terms shallow and

deep are relative terms depending on the verification.

5.2 A Rule for Preevaluation Side Effects

The assignment axiom for v = expr; is

- {Qexpe} v = expr; {Q}

as long as expr doesn’t have any side effects ([21], pp. 15-17) and v is not an
alias for anything in Q or expr. Since C statements may have side effects, this
rule may not apply. As a simple example, the semantics of a = 2 * ++b; is well
defined [25] (it is equivalent to the compound statement ++b; a = 2 * b;), but

the statement modifies the value of b as well as a.

29

To reason about complex statements, we introduce a general inference rule
which derives the correctness of one statement from the correctness of a semanti-

cally equivalent statement.

F SEM_EQ stml stm2
F {pre} stml {post}
F {pre} stm2 {post}

(5.1)

The predicate SEM_EQ is true if its two statement arguments are semantically equiv-

alent. The inference rule means if

e two statements are semantically equivalent, and

e there is a partial correctness theorem for precondition, statement stmi, and

postcondition

we can conclude an analogous partial correctness theorem for statement stm2.
We have not fully formally defined semantic equivalence. Although we have
some inference rules for higher level terms, an SML function checks equivalence
and specializes the definition.
We introduce the following rule to reason specifically about preevaluation

side effects, that is, side effects which take place before the expression is evaluated.

I PreEval expr stml stm2
I SEM_EQ (Seq (Simp expr) stml) stm2

(5.2)

Seq is the abstract syntax constructor which creates a statement from a sequence
of two statements. Simp converts any expression into a simple statement, which is
allowed in C. The PreEval is a predicate which is true if extracting the preevalu-
ation side effects expression expr from statement stm2 yields stml.

Informally the rule means if stm2 can be separated into expr (which has all
preevaluation side effects) and stmil, then expr (in a statement) followed by stmi
is semantically equivalent to stm2.

For example, we can derive theorems about the effect of a = 2 * ++b;
from the sequence of simpler statements ++b; a = 2 * b; from the instances of

the inference rules

F PreEval ++4+b a=2xb; a=2x%x++Db;
- SEM_EQ (Seq(Simp ++4b) a=2%Db;) a = 2% ++ b;

30

and
- SEM.EQ (++b; a=2%b;)a=2x++Db;

F{P} ++b; a=2x%b; {Q}
F{P}a=2x*++01; {Q}

Since we have a deep embedding, we can derive a single rule to separate

preevaluation side effects using Rules 5.1 and 5.2.

I PreEval expr stml stm2

F {pre} (Seq (Simp expr) stml) {post}
F {pre} stm2 {post}

(5.3)

Why add another inference rule just to separate side effects? Homeier’s
language, Sunrise [32], has an operator with a side effect, increment, which can
occur in test expressions. He handles this by embedding the semantics of the
operator in the inference rules. However functions, which have arbitrary semantics
including side effects, can occur in loop or test expressions in C. Even statements
without function calls can have multiple side effects using, say, increment and
assignment operators. We take this more general approach to be able to separate
a side effect from the expression in which it occurs.

Given the above preference for separation inference rules, why define two
rules (one for preevaluation side effects and semantic equivalence and another
for semantic equivalence and partial correctness) instead of the single rule 5.37
Two rules make future development easier since it breaks proofs and inferences
into smaller pieces. The semantic equivalence of preevaluation separation can be
proven from, say, a denotation semantics such as [38] without reference to the
definition of partial correctness. And total correctness need only have one rule for
semantic equivalence rather than a rule for preevaluation side effects, a rule for

postevaluation side effects, a rule for conditionals with side effects, etc.

5.3 A Rule for Postevaluation Side Effects

C allows postevaluation side effects in expressions in addition to preevalu-
ation side effects. The statement a = 2 * b++; is well defined, just as the pre-
evaluation case. The statement can be broken down into the equivalent compound

statement a = 2 * b; b++;.

31

The following rule allows us to reason about postevaluation side effects,

that is, side effects which take place after the expression is evaluated.

I PostEval stml expr stm2

5.4
I SEM_EQ (Seq stml (Simp expr)) stm2 (54)

The PostEval is a predicate which is true if extracting the postevaluation side
effects expression expr from statement stm2 yields stmil.

Informally the rule means if stm2 can be separated into stml and expr
(which has all postevaluation side effects), stm1 followed by expr (in a statement)
is semantically equivalent to stm2.

Like the case for preevaluation side effects, we can derive a rule to separate

postevaluation side effects using Rules 5.4 and 5.1.

I PostEval stml expr stm2

F {pre} (Seq stml (Simp expr)) {post}
F {pre} stm2 {post}

5.4 Side Effects in Conditionals

The rules presented above are inadequate for control statements. For in-
stance, suppose we were allowed to apply the postevaluation rule 5.5 to the follow-

ing code.

if (b++ > 0) {

t = b;
} else {
e = b;

It would be transformed into this (note the postincrement afterward) which is

not the same. The increment would be delayed until after the entire conditional

statement.
if (b > 0) {
t = b;
} else {

32

In the following sections we present inference rules for some control struc-
tures and indicate how the general approach could cover many other structures.
Conditionals are the simplest form of control statements for our purposes.

Without side effects the inference rule is straight forward:

IS_VALUE expr test
F {pre A test} thenCode {post}
F {pre A ~test} elseCode {post}
- {pre} IfElse (expr) thenCode elseCode {post}

Notice we must use IS_VALUE to indicate the equivalence between expr, which is
in the program language, and test, which is in the assertion language.

Any preevaluation side effects can be separated and handled with the pree-
valuation rule 5.3. However postevaluation side effects must be handled specially.

Figure 5.3 shows the flow in a conditional statement with postevaluation side ef-

f)

fects in the test expression.

‘precondition A test ‘ ‘precondition A Ntest‘
post+Stm post+Stm
falseCond
“then” code “else” code
‘postcondition ‘
'

Figure 5.3: Control Flow in a Conditional

Rectangles are predicates on the program state. The pieces of text ‘post-
Stm,” “then” code,” and ¢ “else” code’ show code execution. The sequence of

events 1s

33

1. Find the test condition in the initial state (when the precondition is true),

2. Evaluate the postevaluation side effects, yielding new conditions, then

3. Evaluate the code in “then” or “else” branch, yielding the postcondition.
This is the corresponding inference rule.

I SEM.EQ (Seq (Simp expr) postStm)) (Simp ex)
F (postStm = EmptyStmt) V
(postStm = (Simp postSeEx)A NoPreSE postSeEx)
I IS_VALUE expr test
F {pre A test} postStm {trueCond}
F {pre A “test} postStm {falseCond}
F {trueCond} thenCode {post}
I {falseCond} elseCode {post}
F {pre} IfElse (ex) thenCode elseCode {post}

(5.6)

Informally in order to prove the partial correctness of the conditional state-

ment, we must prove the following:

e The original test expression code, ex, is split into a side effect free test
expression, expr, followed by a statement for any postevaluation side effects

postStm. (Any preevaluation side effects can be removed by Rule 5.3.)

e The postevaluation side effect statement postStm is empty (if there are no
side effects), or it is a simple statement of the postevaluation side effects

postSeEx with no preevaluation side effects.
e The code expr corresponds to test in the assertion language.

e Executing postStm with test true or false establishes the “true” or “false”

conditions respectively.
o Executing the “then” and the “else” code establishes the post condition.

Typically most of these theorems are proven automatically, thus minimizing the

user’s work.

34

An inference rule for one-armed conditionals can be derived from the above
rule and the rule which states that one-armed conditionals are semantically equiv-
alent to two-armed conditionals with empty “else” cases (If and IfElse with Empty,
Table 6.6, page 58).

5.5 Loops with Pre and Post Eval Side Effects

In simple languages the inference rule for a while loop, or backward jump,

is straight forward:

- IS_VALUE expr test
F {invariant A test} body {invariant}

5.7
F {invariant} while expr body {invariant A ~test} (57)

In languages in which the test expression may have side effects, the rule is
more complex. Note that neither the preevaluation (5.3) nor the postevaluation
side effect rule (5.5) are valid. If one were allowed to use, say, the preevaluation

rule, one could prove

while (pre-eval side-effects in expr)

body
by proving

pre-eval side-effect;
while (expr)
body

But in the second form, the side effect is not executed every loop! The flow

of control in a while loop with pre- and postevaluation side effects is given in

Figure 5.4.

35

invariant

preStm
|

{)

‘testState A test‘ ‘testState A “test
' '

postStm postStm

body

]

post

i

Figure 5.4: Control Flow in a While Loop

The inference rule for while statements is then

SEM_EQ (Seq preStm (Seq (Simp testEx) postStm)) (Simp ex)
F (preStm = EmptyStmt) V
(preStm = (Simp preSeEx)A NoPostSE preSeEx)

F (postStm = EmptyStmt) V

(postStm = (Simp postSeEx)A NoPreSE postSeEx)

IS_VALUE testEx test
F {invariant} preStm {testState}
F {testState A test} postStm {bodyCond}
F {testState A “test} postStm {post}
 {bodyCond} body {invariant}

F {invariant} While (ex) body {post} (5:8)

In other words in order to prove the While loop correct, we must prove:

e Executing preStm, then the remaining test expression (testEx), then

postStm is equivalent to the original test expression.

e The preevaluation (preStm) and postevaluation (postStm) side effects state-
ments are either empty statements or are expressions with just pre- or poste-

valuation the side effects respectively.

36

the code testEx corresponds to test in the assertion language.

Executing preStm in the invariant condition establishes a test condition.

Executing postStm with test true or false establishes the body or post con-

ditions respectively.

Executing body code in the body condition reestablishes the loop invariant.

We allow preStmand postStmto be the empty statement in case the original
test expression has no side effects. To support our confidence in this rule, we note
that when expr has no side effects, preStm and postStm are the empty statement.
Therefore the test condition is the same as the invariant, the body condition is
invariant A test, and the post condition is invariant A “test. This reduces to
the basic while loop rule (5.7). For higher assurance this and other inference rules
should be proven from a simpler semantics, as we explained in Sect. 4.6.

The HOL tactic to reduce a while loop optionally takes a test condition
and a body condition. The user can skip either or both if there are no side effects.
The tactic also proves most conditions automatically. Thus the complexity of the

rules are only exposed when necessary, and the user’s work is minimized.

5.6 Other Looping Constructs and Limitations

Other looping constructs can be handled similarly. The for and
do...while loops in C, do...until in Pascal, and loop...begin...again in
Forth can be broken apart into side conditions and correctness conditions over
pieces of code. Built-in tactics can keep track of where correctness conditions are
needed and with regard to which expressions or pieces of code.

Directives which change the flow of control within loops, such as break and
continuein C, can be handled with multiple post conditions as originally set forth
in [1]. For example, a break statement would have a formalization something like
this.

F {pre} break; {|next : false, break: pre|}

In other words, the next sequential condition is “false” (control never arrives at
the next statement), and the precondition of the break is the condition where the

break control flow arrives.

37

The above rules are still not entirely adequate. A test expression may have
multiple pre- or postevaluation side effects. For instance, while (k=(j++, j+1) >
0) This should be separated into the preevaluation side effects j++; k=j+1;,
the test k>0, and, in this case, no postevaluation side effect. The rule only allows
for one pre and post side effect expression. Either NoPreSE and NoPostSE should
work on statements, not just expressions, the extraction of side effects will have to
be more refined, or the abstract syntax should allow the comma (,) operator.

The inference rules given above are not valid in the presence of sequence
points with side effects. Sequence points arise in C from logical OR’s (|]) and
AND’s (&&), which also have short circuit evaluation semantics, and the comma
operator (,), among others. Consider the following code fragment. The variable ¢

may or may not be incremented.
if (b++ || c++ > b)

Arbitrarily many sequence points may occur in an expression leading to arbitrarily
branching control flows. We should be able to apply the general approach of
deriving inference rules from control flows. This should yield inference rules to

separate the additional intermediate states which arise.

38

CHAPTER 6

FORMAL DESCRIPTIONS AND MODELS

A formal verification needs a lot of background definition. Many things
which are “understood” must be explicitly and formally defined. This is probably
one reason formal methods, and formal verification in particular, are used little.
But this is also one of its strengths: details are much less likely to be overlooked
and assumptions are clearly stated.

This chapter presents the formalizations upon which we base the verifica-
tion of thttpd. We begin with the formal specification of security in Sect. 6.1.
That is, it is our formal definition of the statement “thttpd is secure.” Section 6.2
presents our formalization of C: the abstract syntax tree (AST) representation,
semantic rules, inference rules for partial correctness in axiomatic semantics, and
correctness or well-formedness rules, and correspondence with the assertion lan-
guage. Section 6.3 gives our formalization of relevant parts of Unix, and finally
Sect. 6.4 is our formalization of C library functions and operating system calls. Be-
cause we have spent a lot of time finding and correcting silly errors while trying to
get the formalization of calls correct, we include a subsection which is a guidebook

on what to do and what not to do.

6.1 Formalizing the Specification

Programs must be verified with regard to something, e.g., a specification or

properties to be checked. The security properties for thttpd are

e information integrity (no information on the server can be corrupted by out-

side users),

e confidentiality (the server only provides information which is explicitly au-

thorized for outside access), and

e availability.

39

Although thttpd was designed to maximize availability (or minimize denial-
of-service attacks), we felt this would be much more difficult to quantify and prove,
so we leave it out of this verification. For instance, a user can repeatedly access
the server causing the log file to grow until the disk is filled. Even though integrity
and confidentiality are preserved (nothing on the disk is corrupted and the user
didn’t get any unauthorized information), http service (and, probably, most other
services) are not available.

The above are not formal specifications. We must formalize them before
we can reason about them. We consider the code to be secure if it has both
confidentiality and information integrity. We introduce two predicates to express
that the code has those properties: hasConfidentiality and hasInfoIntegrity.
Confidentiality is with respect to the file system. Information integrity is with
respect to some initial file system state (preFSS), the file system, and a log file,
which may change as a result of the user’s request. Thus the highest level predicate

1s as follows.

! code preFSS fs logfile.
isSecure code preFSS fs logfile =
hasConfidentiality code fs /\
hasInfolntegrity code preFSS fs logfile

6.1.1 Information Integrity

We formalize information integrity by equating “information on the server”
with the contents of the file system and specify that “not corrupted” means not
changed, deleted, moved, renamed or made inaccessible. These definitions are

actually too strict, since the user can cause two types of changes.
1. Requests are logged in (added to) the log file.

2. The return output to the user, through stdout, is modeled as part of the file

system, too.

Thus strictly speaking a user’s action can cause a change on our system. So we

refine the specification to say that the server preserves information integrity if it

40

changes nothing on the file system, except possibly the log file or stdout. We define
the predicate hasInfoIntegrity code to mean “this code maintains information

integrity.”

! code preFSS fs logfile.
hasInfolntegrity code preFSS fs logfile =
Partial (SoFS preFSS fs) code
(let finode = inodeNamed logfile in
(V'inode.” ((inode=finode) \/ (inode=SYS_stdout)) ==
preFSS inode (getFile fs inode)))

6.1.2 Confidentiality

Confidentiality is defined as making sure that whatever information a user
gets is explicitly authorized for outside access. For a web server the only user of
interest is the user making the request. Local users (such as system administra-
tors) have interaction other than through the web server code, so could violate
confidentiality other ways. The only way information which reaches the request-
ing user is the output of the program. Thus we can say that a piece of code has
confidentiality if all the output to the user (stdout in Unix) has confidentiality.
Since we modeled stdout as just another “file” in the file system, we can use a

single predicate over the file system to represent confidentiality.

! code fs.
hasConfidentiality code fs =
Partial (SoFS hasConfidentialityFile fs) code
(SoFS hasConfidentialityFile fs)

In detail this states that a piece of code has confidentiality with respect to a
file system if the following partial correctness can be proven. If the State of the
File System (SoFS) has confidentiality for each file of the file system (fs), af-
ter the code is executed the file system still has confidentiality. The predicate
hasConfidentiality represents that we only care about the contents of the “file”
stdout since we assume a remote user can’t access any other file (except to get its

contents through this web server).

41

! inode ufile.
hasConfidentialityFile inode ufile =

(inode = SYS_stdout) ==> (nonConfidential ufile)

nonConfidentialFD (OPEN_fildesfn s n cwd root) =
nonConfFileOwner (inodeNamed s) /\

nonConfFilePerm (inodeNamed s) /\ (fsconfined cwd root)

We define the contents of a file to be nonconfidential recursively. A file descriptor
refers to a nonconfidential file if it was opened with the correct constraints: the
file ownership and permissions show it was meant for outside use and the cur-
rent working directory and file system root are confined. Any information read
from such a file descriptor is nonconfidential. We must also explicitly declare that

constant strings from the program, such as error messages, are nonconfidential.

6.2 Formalizing C

The C programming language is enormously complex. This complexity
gives it tremendous expressive power, but also requires a huge formalization. We
only model features, aspects, properties, etc. which are necessary to our verifica-
tion. Complete formalization would require many times more complexity and be
(even more) difficult to work with. A complete formalization is a model of even
the tiniest detail!

Our formalization of C has several components: an AST, semantics, infer-
ence, and correctness rules, and correspondence with assertion language expres-
sions. We have partially formalized some features, thus a particular feature may
have an AST representation, but no semantic rules.

As Homeier points out, axiomatic semantics uses two related languages: one
to represent the program code and one to represent the assertion language. The
first language is embodied in the AST and rules. The second language expresses
the pre- and postconditions. Some differences are that the program language has
variable declarations and assignments while the assertion language has universally
and existentially quantified variables. The use of two related, but distinct, lan-

guages is often overlooked. For instance, the typical presentation of the inference

42

rule for a conditional use the same object, test, in both assertions and code, as

below.

F {pre A test} code {post}
F {pre A ~test} = post

F {pre} If (test) code {post}

6.2.1 Scope of Formalization

Here we summarize the aspects of C which are not represented at all, par-

tially represented, or full represented. To be fully represented, the aspect must

be
e automatically parsed from C source code,
e deeply embedded in the AST, and
e have inference rules covering all semantics.

Most importantly, we assume that all programs to be verified are valid, i.e.,
compile without error. This allows us to ignore whole classes of possible lexical

and semantic errors, such as undeclared variables.

Features Not Represented

Some of these may be partially supported, for instance defined in the ab-

stract syntax, but we cannot reason about them.

e character escapes, except \n and \0

long, short, unsigned, or floating point types

functions as arguments or pointers-to-function

hexadecimal or octal constants

explicit storage classes (auto, extern, register, and static) or type qualifiers

(const and volatile)

type casts or conversions

43

e enumeration types

e unions or bit fields

o typedef

e pointer arithmetic

e dynamic memory allocation

e recursive function calls

o “for,” “do...while,” “goto,” “break,” “continue,” and “switch” statements
e returning a value from a user-defined function

e the preprocessor (except for symbolic constants)

The preprocessor is not modeled, except for “symbolic constants” such as
the #define below. We could have run all programs through the preprocessor first,
but many common “functions” and “variables,” such as getc and stdout, are ac-
tually macros and expand to complex expressions. Additionally such expansion
would be tied to a single implementation. We chose instead to approximate #de-
fine statements similarly to global variables. We manually rewrote macros with

arguments as functions.
#define name constant

We have no inference rules to derive the postcondition (return value) of a
function from its body, particularly statements containing return’s. We did not
model this since thttpd doesn’t use “return” statements. Something like Homeier’s
entry and exit logics should suffice.

Since the standard axiomatic semantics deals exclusively with structured
code, there is no provision for non-local jumps, such as the break, continue, and
return statements or calls to exit(). We believe Arbib and Alagié¢’s axiomatic

semantics, which have multiple postconditions, could work.

44

Features Approximately or Partly Represented

We handle the following aspects in a program outside the formal system.

Thus these are shallowly embedded (see Sect. 5.1).

o lexical analysis, including comments, operators, and string and character

constants with escapes (\)
e operator precedence and associativity

e operator disambiguation (prefix vs. postfix for ++ and --, unary vs. binary

for &, etc.)
e keyword identification
o identifier scope rules and declarations
e symbolic constants (#define name constant)
We approximate the following features.
e structures: only int-type fields, no user-defined struct’s

e type int: in the assertion language we model int’s as natural numbers (the

non-negative integers, which are the HOL type :num)*

e other types: in the assertion language we model char’s as HOL ascii charac-

ters, and pointer-to-char and string types as HOL strings
e arrays: model as HOL arrays
e pointers: only dereference of address-of lvalue yields original lvalue

e varargs (functions which take variable number of arguments): The AST rep-
resents function parameters with a list?. The initial, fixed set of arguments
are given directly. The rest are represented by a variable. For instance,

fprintf () is declared as

1We discuss alternatives and consequences of this decision in Sect. 6.4.1.

2Since parameter types are deeply embedded, the list is a consistent HOL type: CVar. A
shallow embedding would have caused problems since we would have had to combine elements
of different types, e.g., [format:string, x:num, y:num].

45

Func (Var "fprintf" 0 Int)
(CONS (Var "stream" 0 (Ptr (Struct "FILE")))
(CONS (Var "format" O (Ptr Char)) varargs))

Specific rules instantiate theorems about varargs functions, but they do not

cover all cases.

The C language uses type casting extensively. The term “type casting”
refers to coercing a value of some type to an equivalent value of another, related
type. A simple example is assigning an integer value to a floating point variable.
Operating system calls are often written using a specially defined type. For in-
stance, time returns a value of time_t rather than int, and strftime takes and
returns values of size t.

To handle type casting, we would have to write a rather elaborate model of
C types. Since thttpd does not depend on unreasonable assumptions about types,
we work around the problem. For instance, we axiomatize system calls replacing

the special types with int. No explicit type casting is used in thttpd.

Features Fully Represented

We fully model the following features of C.

e all operators, except operator-assignments (such as +=), the ternary oper-
ator (7:), logical “and” and “or” (&% and ||), the comma (,) operator, and

sizeof

o “if” “while,” “return,” empty, simple expression, and compound or block

statements
e function and variable definition
e function calls

e default variable initialization

The remainder of this section generally proceeds from the lowest level, syn-
tax, Sect. 6.2.2 through side effects, Sect. 6.2.3, semantically equivalent constructs,
Sect. 6.2.4, well-formedness conditions, Sect. 6.2.5, to the highest level, inference

rules, Sect. 6.2.6.

46

6.2.2 Abstract Syntax Tree

Rather than carry the complex concrete syntax of C programs into the
formal system, a program parses the source and does some semantic analysis. The
C “source code” about which we reason is an abstract syntax tree with keywords
replaced by constructors and much implicit information, such as precedence, types,
and scoping, made explicit.

The HOL representation of a definition is somewhat verbose and has many
detail which are not pertinent. We present the essence of the definitions here. A
new type definition is the type name, an equal sign (=), and a list of constructors
separated by vertical bars (|). Each constructor is the constructor name and a list
of (predefined) types. The predefined HOL types we use are “string” (lists of ascii

characters) and “num” (natural numbers).

CConst = CCid string |
CCstr string |

CCint num

C constants can be symbolic constants or #define names (CCid), string constants,

or integer constants.

CType = Char | Int | Void |
Ptr CType |
Array CType CConst |
Struct string |
Funty CType CType

C types are either char, int, void, pointer, array, struct, or function. The type
Array has the type of array elements and the size of the array. If the size is not
known, for example a dynamically allocated array, the constant CCid "UNK" is
used. Function types are curried. This is not a problem in practice since function
names are represented by a special constructor which has a list of parameters.

We define two HOL constants, EOS and CR, to represent >\0’ and ’\n’
respectively. Both are of type string.

Cvar = Var string num CType

47

A C variable is a name, a disambiguator, and a type. The disambiguator was first
introduced by Homeier [32] and is used for scoping. For instance, the two different

variables both named j in the fragment

int j;
{
int j;
k=k+ j;
+
k=k+ j;

could be translated as
(Var "j" 1 Int)
and
(Var "j" 0 Int)

The disambiguator is also used in inference rules to generator unique versions of

variables.

Cbinop = Mul | Div | Mod | Add | Sub | ShL | ShR |
Eq | NEq | Lt | Gt | LEq | GEq |
And | Or | BAnd | BOr | BXor

The binary operators are multiply (*), divide (/), modulo (%), add (+), subtract
(-), shift left (<<), shift right (>>), equal (=), not equal (=), less than (<), greater
than (>), less than or equal (<=), greater than or equal (>=), logical AND (&&),
logical OR (1), bitwise AND (&), bitwise OR (), and bitwise exclusive OR (~).

Cunaryop = Not | BNot

The unary operators which take an expression are logical negation (!) and bitwise

complement (7).

Clunaryop = AdrOf | PreInc | PostInc | PreDec | PostDec

48

To add semantic checking, we separately define unary operators which take an
lvalue. They are address-of (&), prefix and postfix increment (++), and prefix and

postfix decrement (--).
ParamlList = PL CExpr ParamList | PLnull

A function call parameter list is a C expression and a parameter list or an empty
list. This should really be defined as a HOL list of expressions, but the imple-
mentation was exceedingly complicated. We do, however, define a function which

converts from a ParamList to a HOL list.

(PL2CEL (PL h 1) = (CONS h (PL2CEL 1))) /\
(PL2CEL PLnull = [])

Lvalue = Vref Cvar |
Aryref Cvar CExpr |
Deref CExpr |
Field Lvalue Cvar |

Arrow Lvalue Cvar

An lvalue is a variable reference, an array reference (including the array and a
subscript), a dereference (*), a structure member access (.) (including the structure

and the member), or a dereferencing structure member access (->).

CExpr = Const CConst CType |
Lval Lvalue |
Assign Lvalue CExpr |
OpAsgn Lvalue Cbinop CExpr |
Binary CExpr Cbinop CExpr |
LUnary Clunaryop Lvalue |
Unary Cunaryop CExpr |
Condl CExpr CExpr CExpr |
Comma CExpr CExpr |

Call Cvar ParamlList

49

A C expression is a constant, an lvalue, an assignment (=), an operator-assignment
(such as +=), a binary operation, a unary operation taking an lvalue, a unary
operation taking an expression, a ternary conditional (7:), a comma operation
(,), or a function call.

We added operator-assignment, the ternary conditional, and the comma
operator for future work. Although they are in the abstract syntax, we have no

inference rules for them.

CStmt = EmptyStmt |
Simple CExpr |
If CExpr CStmt I
IfElse CExpr CStmt CStmt |
CWhile CExpr CStmt I
DoWhile CStmt CExpr |
Seq CStmt CStmt I
Block Cvar list CStmt |
Ret CExpr |
EmptyRet |
Break |
Cont

A C statement is an empty statement (a lone ;), simply an expression, an “if”
or “one-armed” conditional, an “if..else” or “two-armed” conditional, a “while,”
a “do..while,” a sequence (two succeeding statements), a compound or block, a
“return” with an expression, a “return” without an expression, a “break,” or a
“continue.”

As with some operators, “do..while,” “break,” and “continue” are in the

abstract syntax, but we have no inference rules for them.
Cbody = SOMEBody CStmt | NOBody

A function body can either be a statement or nothing. The latter is needed to

describe axioms for system calls or library functions for which we have no body.
Cfunction = Func Cvar (Cvar list) (Cvar list) Cbody

50

A function is the function name (which includes the return type), a list of param-
eters, a set (list) of global variables which may be referenced or modified, and an

(optional) body.

Cfile = EndO0fCFile I
Cfdcl Cvar list Cfile |
Cffun Cfunction Cfile

We define a C file as a list of variable declarations and function definitions. We
include this level rather than going to the level of the entire program since some
scopes are confined to source files.

We wrote a program to translate from C source to HOL abstract syntax
trees (AST). It is adapted from Paulson [40, chapter 9]. The parser has many
enhancements to make it easier to debug grammars. Here is a nonsensical piece of

C code and its corresponding AST.

void m;int cup;

y(){char h,q;FILE *a;if (0!=h)q=*a;else {t=m++;m=cup("joe");}}

Cfdcl [Var "m" 0 Void; Var "cup" 1 Int]
(Cffun
(Func (Var "y" 0 Int) [] []
(SOMEBody
(Block [Var "h" 0 Char; Var "q" 0 Char;
Var "a" 0 (Ptr (Struct"FILE"))]
(IfElse (Binary (Comst (CCint 0) Int) NEq
(Lval (Vref (Var "h" 0 Char))))
(Simple (Assign (Vref (Var "q" O Char))
(Lval (Deref
(Lval(Vref (Var "a" 0(Ptr(Struct"FILE")))))))))
(Block [] (Seq
(Simple (Assign(Vref(Var "t" 0 Void))
(LUnary PostInc (Vref(Var "m" 0 Void)))))
(Simple (Assign (Vref (Var "m" 0 Void))

51

(Call (Var "cup" 1 Int)
(PL(Const(CCstr "joe") (Ptr Char))PLnull)))))))))))
EndOfCFile

6.2.3 Side Effects

A significant difference between this work and others is the treatment of
side effects. In this section we define many aspects of what side effects are, what
are preevaluation or postevaluation side effects, etc. We have not formalized all
aspects of side effects: some conversions are shallowly embedded, that is, the
conversions are done by external programs rather than by rules within the formal
system. (Because of the informality of some parts and the axiomatized inference
rules, we doubt our system is error-free. For serious use, it should be formally
proved from a lower-level description as we argued in Sect. 4.6.)

We begin by defining which C expressions and lvalues have no side effect,
that is, those which don’t change the program state, Table 6.1. Inference rules are

in two forms.
1. Constructs which never changes the program state, e.g., constants.

2. Constructs which don’t change the program state, but some component may,

e.g., the index of an array reference.

All assignments, increments, and decrements change state. We are conservative
and assume that any function call changes state.

Next we define which expressions and lvalues have no postevaluation side
effects, Table 6.2. A postevaluation side effect is a change to the program state after
the evaluation of the expression. The postincrement (v++) and postdecrement
(v--) have postevaluation side effects.

As we showed in Chap. 5, we handle side effects by separating them from
statements or expressions, and evaluating the semantically simpler equivalent. The
predicate PreEval defines how to separate preevaluation side effects from state-

ments. Informally the expression

PreEval 1lv e sl s2

52

Variable Reference:

F NoSELv (Vref var)

Array Reference (var[c]):
- NoSE ¢

F NoSELv (Aryref var c)

Dereference (*c):
F NoSE ¢
F NoSELv (Deref ¢)

Structure Access (lv.var):

F NoSELv lv

F NoSELv (Field lv var)

Constant:

F NoSE (Const ¢ t)

Lvalue Ezpression:

F NoSELv 1
F NoSE (Lval 1)

Binary Operation:
F NoSE ¢l F NoSE c2
F NoSE (Binary cl opr ¢2)

Address-Of (6lv):
F NoSELv lv

F NoSE (LUnary AdrOf lv)

Unary Operation:
F NoSE ¢

F NoSE (Unary opr c)

Table 6.1: Lvalues and Expressions Without Side Effects

53

Variable Reference:

F NoPostSELv (Vref var)

Array Reference (var[c]):
- NoPostSE ¢

Constant Ezpression:

F NoPostSE (Const ¢ t)

Lvalue Ezpression:

F NoPostSELv 1

F NoPostSELv (Aryref var c)

Dereference (*c):
F NoPostSE ¢
F NoPostSELv (Deref ¢)

Structure Access (lv.var):

F NoPostSELv lv

F NoPostSE (Lval 1)

Assignment:

F NoPostSELv 1 F NoPostSE e

F NoPostSE (Assign 1 e)

Binary Operation:
F NoPostSE ¢l F NoPostSE c¢2

F NoPostSELv (Field lv var)

Empty Parameter List:

F NoPostSEP] PLnull

Nonempty Parameter List:
F NoPostSE ce
F NoPostSEPI prest

F NoPostSEP] (PL ce prest)

Function Call:
F NoPostSEPI plist
F NoPostSE (Call v plist)

 NoPostSE (Binary cl opr c2)

Address-Of (6lv):
F NoPostSELv 1v
F NoPostSE (LUnary AdrOf lv)

Preeval Increment (++1):
F NoPostSELv lv

F NoPostSE (LUnary Prelnc lv)

Preeval Decrement (--lv):

F NoPostSELv lv

F NoPostSE (LUnary PreDec lv)

Unary Operation:
F NoPostSE ¢
F NoPostSE (Unary opr c)

Table 6.2: Lvalues and Expressions With No Postevaluation Side Effects

54

means that the AST
Seq (Simple e) sl

has the same semantics as

s2

The lvalue, 1v, holds the result of the expression, e. The lvalue cannot have any
side effects, and the expression cannot have any postevaluation side effects.

We have only formalized part of PreEval, Table 6.3: the rest is shallowly
embedded in an external routine. We use NoSE to ensure that the lvalue has no side
effects, and we use NoPostSE to ensure that the expression has no postevaluation

side effects.

Return Statement: Simple Statement:
F NoSELv 1 F NoSELv1 I NoPostSE e
F NoPostSE e I PreEval 1 e (Simple cme)
I PreEval 1 e (Ret cme) (Ret c) (Simple ¢)
If Statement: If/Then/Else Statement:
F NoSELv 1 F NoSELv1 | NoPostSE e
F NoPostSE e I PreEval 1 e (IfElse cme sl s2)
F PreEval 1 e (If cme s) (If ¢ s) (IfElse ¢ sl s2)

Table 6.3: Preevaluation Side Effect Separation

Finally we define which expressions and lvalues have no preevaluation side
effects, Table 6.4. A preevaluation side effect is a state change before or during the
expression evaluation. Assignment, function call, preincrement, and postincrement
have preevaluation side effects.

The reader may question whether it is right to consider, say, assignment
to be a preevaluation side effect. Strictly speaking “preevaluation side effect” is
simply a name we give to any predicate, property, or phenomenon we choose. So
the question reduces to whether our definition is consistent and whether it is useful.

Since NoPreSE is defined from the existing logic, rather than being asserted,

we cannot introduce inconsistencies in the underlying formal logic. Since we do not

55

explicitly define an inverse of NoPreSE, for instance, PreSE, we cannot introduce
inconsistencies into our semantics by having an expression which is both NoPreSE
and PreSE. However we do know, at a higher level, of relationships between the
preceding NoSE, NoPostSE, and NoPreSE. We have proven NoSE P = NoPostSE P
and NoSE P = NoPreSE P. (We tried to prove NoPostSE PANoPreSE P = NoSE P,
but have not been able to. It appears to be a problem with using induction on
two different functions, NoPostSE and NoPreSE, at once.) At the highest level, we
use these predicates in inference rules. The more confidence, we should prove that
the inference rules with the predicates are consistent with lower level semantics
(Sect. 4.6).

Judging whether the definition is useful is harder. Extreme definitions such
as Ve. NoPreSE e (every expression is NoPreSE) or Ve. ~“NoPreSE e (nothing is
NoPreSE) are obviously not very useful, but the above definitions are not extreme.
We have found that these predicates express what we want to express and let us
prove what we want to prove (and believe to be correct). Therefore we are satisfied
with the definitions.

The predicate PostEval defines how to separate postevaluation side effects

from statements. Informally the expression
PostEval sl e s2

means that the AST
Seq s1 (Simple e)

has the same semantics as

s2

The expression, e, cannot have any preevaluation side effects.

Postevaluation side effects differ from preevaluation side effects in that the
result of postevaluation side effects cannot be used in the statement. Thus there
is no lvalue in the predicate. We use NoPreSE to partially formalize PostEval,
Table 6.5. The table is much shorter than that for PreEval because postevaluation

side effects are handled in special ways in control structures.

56

Variable Reference

F NoPreSELv (Vref var)

Array Reference (var[c]):
 NoPreSE c

Constant Ezpression:

F NoPreSE (Const ¢ t)

Lvalue Ezpression:

F NoPreSELv lv

F NoPreSELv (Aryref var c)

Dereference (*c):
F NoPreSE c
F NoPreSELv (Deref c)

Structure Access (lv.var):

F NoPreSELv lv

F NoPreSE (Lval 1v)

Binary Operation:
F NoPreSE c1 F NoPreSE c2
- NoPreSE (Binary cl opr ¢2)

Address-Of (6lv):
F NoPreSELv lv

F NoPreSELv (Field lv var)

Unary Operation:
F NoPreSE ¢

F NoPreSE (Unary opr c)

F NoPreSE (LUnary AdrOf lv)

Posteval Increment (lv—/—-/—):
F NoPreSELv lv
F NoPreSE (LUnary PostInc lv)

Posteval Decrement (lv--):
F NoPreSELv lv

F NoPreSE (LUnary PostDec lv)

Table 6.4: Lvalues and Expressions With No Preevaluation Side Effects

Simple Statement:

F NoPreSE e

I PostEval (Simple cme) e (Simple c)

Table 6.5: Postevaluation Side Effect Separation

57

6.2.4 Semantic Equivalence

Rather than defining many additional partial correctness inference rules,

we define semantic equivalence of certain statements, Table 6.6. This allows us to

define total correctness, termination, or other predicates more succinctly. Infor-

mally if two statements are semantically equivalent, one may be replaced by the

other in any circumstance and the semantics of the program is unchanged.

Reflezivity:

FSEM_EQ s s

Symmetry:
F SEM_EQ sl s2
FSEM_EQ s2 sl

Transitivity:
F SEM_EQ sl s2
FSEM_EQ s2 s3

F SEM_EQ sl s3

EmptyStmt Null (Left):

FSEM_EQ (Seq EmptyStmt s) s

EmptyStmt Null (Right):

FSEM_EQ (Seq s EmptyStmt) s

Sequence Associativity:

F SEM_EQ (Seq (Seq sl s2) s3)
(Seq sl (Seq s2 s3))

Sequence Composition:

FSEM EQrlr2 F SEM_EQ sl s2
F SEM_EQ (Seq rl s1) (Seq r2 s2)

Preevaluation Side Effect Separation:
F PreEval lv expr sl s2

- SEM_EQ (Seq (Simple expr) s1) s2

Postevaluation Side Effect Separation:
F PostEval sl expr s2
- SEM_EQ (Seq sl (Simple expr)) s2

If and IfElse with Empty:

F SEM_EQ (IfElse t s EmptyStmt)
(If t s)

Table 6.6: Semantic Equivalence of Statements

6.2.5 Well-Formedness Conditions

Well-Formedness conditions are taken almost unchanged from Homeier [32].

They are a collection of consistency checks mostly related to function calls.

58

We begin with a series of auxiliary definitions. To infer anything about a
function call from a partial correctness theorem on a function definition, we must
be sure that the actual or calling parameters conform to the formal or declared
parameters. We define the predicate Ctypes_conform to check that two C types
conform. The predicates is Ptr, is_Array, is _Struct, and is Funty are true if
the operand is a pointer, array, structure, or function respectively. Basically two
types conform if they are the same primitive type, or they are structurally the

same and their subtypes conform.

(Ctypes_conform Char t = (Char = t)) /\
(Ctypes_conform Int t = (Int = t)) /\
(Ctypes_conform Void t = (Void = t)) /\
(Ctypes_conform (Ptr st) t =
((is_Ptr t \/ is_Array t) =>
(Ctypes_conform st (CTy_subty t)) | F)) /\
(Ctypes_conform (Array stl sz) t =
((is_Ptr t \/ is_Array t) =>
(Ctypes_conform stl1 (CTy_subty t)) | F)) /\
(Ctypes_conform (Struct s1) t =
(is_Struct t => (sl = Struct_subty t) | F)) /\
(Ctypes_conform (Funty it ot) t =
(is_Funty t => Ctypes_conform it (Funty_frmty t) /\
(Ctypes_conform ot (Funty_toty t)) | F))

Define that two variables have the same name and disambiguator and their
types conform. From this definition we prove a theorem which is easier to use: it

“decomposes” both variables at the same time.

TYPE_CONF (Var n d ty) v2 =
(n = Cvar_name v2) /\ (d = Cvar_disamb v2)

/\ Ctypes_conform ty (Cvar_ v2)

TYPE_CONF (Var n d ty) (Var n2 d2 ty2) =
(n = n2) /\ (d = 42) /\ Ctypes_conform ty ty2

59

Define that the first set is a subset of the second given type conformance.

('a. IS_SUBSET_TYCONF [] a = T) /\
(la h 1. IS_SUBSET_TYCONF (CONS h 1) a =
(SOME_EL (TYPE_CONF h) a) /\ (IS_SUBSET_TYCONF 1 a))

Define set difference, that is, SETDIFF a bis a - b.

(1 (b:’a list). SETDIFF [] b = []) /\
('b h 1. SETDIFF (CONS h 1) b =
let diffTail = (SETDIFF 1 b) in
(IS_EL h b) => diffTail | (CONS h diffTail))

A list of variables is piece-wise distinct if no variable occurs more than once
in the list [32, Sect. 10.1, p. 234]. The predicate IS EL is true if the first operand

is an element of the second operand, a list.

(oL [1 = T) /\
(th 1. DL (CONS h 1) = “(IS_EL h 1) /\ (DL 1))

Currently we shallowly define the following. It is straight forward, but
time consuming, to formally define them, as Homeier does. Since the two well-
formedness checks are rarely, if ever, violated, we believe this informality does not

really reduce the number of errors we might catch in programs.

e WF xs x: A list of variables is well-formed if every variable in the list is

well-formed [32, Sect. 10.4.2, p. 256].

e WF_c stmt: A statment, stmt, is well-formed if While statements have well-
formed termination conditions, Call statements use variables reasonably
(e.g., don’t pass a global as a reference), and logical variables aren’t used

in expressions [32, Sect. 10.4.2, p. 258].

e variants vs bs: Generate unique variants (using disambiguators) of a set

of variables, vs, with respect to a base set, bs [32, Sect. 10.1, pp 231-234].

e logicals vs: Generate logical (assertion language-only) versions of program
variables. Logical variables are only used in assertions, and therefore cannot

be changed. They are used as “initial” values.

60

e GV_c stmt: Return the global variables used by functions called in the state-

ment, stmt.
e FV_c stmt: Return the free program variables of the statement, stmt.
e FV_a e: Return the free variables of an assertion (HOL) expression, e.

e pairwiseEqual v11 v12: Create a conjunction of pairwise equivalency of
two lists of variables. For instance, if a, b, ¢, and d are variables, we can

conclude the following.

I pairwiseEqual [a;b] [c;d] = (a=c)A(b=4d)

Rule 6.1 defines that a function specification is well-formed syntactically,
e.g., all variables used in the body are either parameters or listed as globals. This
corresponds to Homeier’s WF _proc_syntax [32, p. 259]. Since we did not deal with
recursive functions, we left out the check for recursive calls. It should be straight

forward to add.

x = APPEND formls globls F x0 = logicals x
F WF xs x F DL x = WF_c body
FIS.SUBSET (GV_c body) globls F IS_.SUBSET (FV_c body) x
FIS_.SUBSET_TYCONF (FV_a pre) x
FIS_.SUBSET_TYCONF (FV._a post) (APPEND x x0)
F WF _fn_syntax pre (Func name formls globls (SOMEBody body)) post

(6.1)

Rule 6.2 is the partial correctness condition for C functions. A well-formed
function call, WF _fnp, serves as a “template” or pre-proved theorem for function
calls. That is, a function call is verified using a WF_fnp theorem. Our WF_fnp
corresponds to Homeier’s WF proc [32, p. 260]. Any return value is indicated by
a predicate on the special variable C_Result in the postcondition. Informally the
inference rule states that a function is partially correct if it is well-formed and the
body can be proved partially correct. The pairwiseEqual represents variables set

to the “initial” values of the actuals.

61

x = APPEND formls globls F x0 = logicals x
F WF fn_syntax pre
(Func name formls globls (SOMEBody body)) post
F {(pairwiseEqual x x0) A pre} body {post}
F WF _fnp pre (Func name formls globls (SOMEBody body)) post

(6.2)

6.2.6 Inference Rules for Partial Correctness

For reference, we present all the inference rules for partial correctness in
Tables 6.7 and 6.8. We discussed in detail various rules which handle side effects
in Chap. 5. The inference rules are repeated, with their corresponding HOL tactics
and uses documented, in App. A. Here we will only make a few comments on the
rules.

In the rule for expressions without side effects, the substitution is the ¢ <
[z := €| operator from Homeier.

The rule for expressions with side effects needs to formally specify the rela-
tion of the precondition on the postcondition. Some substitution-like relation, like
that in the rule for expressions with side effects, should be mentioned.

In the array assignment rule, the array substitution replaces every a in ¢
with a new function having the value e at location i. This corresponds to the
¢ < [a[t] := €] operator from Homeier.

The block inference rule is incorrect for local variables which shadow outer
variables. This should be easy to correct, for instance, see [21].

We derive the inference rules in Table 6.9 for efficiency in doing proofs.
We also prove a more general inference rule for While which includes postcondi-
tion weakening. The postcondition weakening makes it easier to use in a tactic:
the tactic can leave an implication subgoal if the computed postcondition doesn’t

match the goal.

6.2.7 C and the Assertion Language

We primarily use built-in HOL expressions for the assertion language. In

some cases we deeply embed features of C to model them more accurately.

62

Precondition Strengthening:
I stronger = pre
F {pre} stm {post}
 {stronger} stm {post}

Postcondition Weakening:

F {pre} stm {post}
I post = weaker

F {pre} stm {weaker}

Ezpression, No Side Effects:
F NoSE e

Congunction:
F {prel} stm {postl}
F {pre2} stm {post2}

F {prelApre2} stm {postlApost2}

Disjunction:
F {prel} stm {postl}
F {pre2} stm {post2}

F {prelVpre2} stm {postlVpost2}

Ezpression, Side Effects:
F NoSELv 1

- {POSt[ec_result]}
(Simple e){post}

Empty Statement:

F {pre} EmptyStmt {pre}

Semantic Equivalence:

F SEM_EQ stml stm?2
F {pre} stml {post}
F {pre} stm2 {post}

- {pre} (Simple (LUnary op 1))
{post}

Block:

F {pre} stm {post}
F {pre} (Block llv stm) {post}

Sequence:
F {pre} stml {mid}
F {mid} stm2 {post}

F {pre} (Seq stml stm2) {post}

Assignment:

F NoSE e

F {posts} (Simple (Assign (Vref x) €)) {post}

Array Assignment:

F NoSE 1

F NoSE e

= {postyy; } (Simple(Assign(Aryref a i) e)){post}

Table 6.7: Inference Rules for Partial Correctness, Part [

63

If/Then/Else (Two-Armed Conditional):
F (postStm = EmptyStmt) V
(postStm = (Simp postSeEx)A NoPreSE postSeEx)
I SEM.EQ (Seq (Simp expr) postStm)) (Simp ex)
I IS_VALUE expr test
F {pre A test} postStm {trueCond}
F {trueCond} thenCode {post}
F {pre A ~test} postStm {falseCond}
I {falseCond} elseCode {post}
F {pre} IfElse (ex) thenCode elseCode {post}

While:
F (preStm = EmptyStmt) V
(preStm = (Simp preSeEx) A NoPostSE preSeEx)
F (postStm = EmptyStmt) V
(postStm = (Simp postSeEx)A NoPreSE postSeEx)
I SEM.EQ (Seq preStm (Seq (Simp testEx) postStm)) (Simp ex)
F {invariant} preStm {testState} IS _VALUE testEx test
F {testState A test} postStm {bodyCond}
F {bodyCond} body {invariant}
F {testState A “test} postStm {post}
F {invariant} (While ex body) {post}

Function Call:
F WF _fnp pre (Func name vvals globls b) post
F WF ¢ (Simple (Call name ps)) | vals = specialize_varargs vvals ps
| vals’ = variants vals (APPEND (FV_a gpost) globls)
Fy = APPEND vals globls F x = APPEND vals globls
F x0 = logicals x F y0 = logicals y
F x0’ = variants x0 (FV_a gpost)
I specpost = SUBS post (APPEND vals’ x0’) (APPEND vals y0)
F postimpq = SUBS (specpost = gpost) newC_Result genrC_Result

- {(prelfals’ A (Vx.postimpq)Zy)ii3errps}
(Simple (Call name ps)) {gpost}

Table 6.8: Inference Rules for Partial Correctness, Part 11

64

Sequence Assoc I:

F {pre} (Seq (Seq sl s2) s3) {post}
F {pre} (Seq sl (Seq s2 s3)) {post}

Sequence Assoc II:

F {pre} (Seq sl (Seq s2 s3)) {post}
F {pre} (Seq (Seq sl s2) s3) {post}

If/Then (One Armed Conditional):
F (postStm = EmptyStmt) V
(postStm = (Simp postSeEx)A NoPreSE postSeEx)
I SEM.EQ (Seq (Simp expr) postStm)) (Simp ex)
I IS_VALUE expr test
F {pre A test} postStm {trueCond} I {trueCond} code {post}
F {pre A ~test} postStm {falseCond} I falseCond = post

F {pre} If (ex) code {post}

Table 6.9: Derived Partial Correctness Inference Rules

65

Variables which only appear in the assertion language are prefixed with
a caret (") and are referred to as “logical variables.” Thus “x may appear in,
say, a precondition, such as "x > 0 = x > 0, but it would be incorrect (that is,
violate well-formedness conditions, Sect. 6.2.5) to have Simple (Assign (Vref
(Var "~"x" 0 Int)) (Const (CCint 0) Imnt)).

We need to model C arrays in some detail in the assertion language. We
define a HOL type which is a function, from numbers (indices) to values, and the
size of the array. We create a symbolic numeric constant, UNK, to use if the array
size is unknown. We define the array update function, CA PUT X i y, which is a
new array (function) and the original size. The new array is everywhere the same
as the original array, X, except at i, where it has the value y. (This corresponds to
[X]i:y] in [41, page 112].) Note that if the index is not in the range [0, size), the

value is undefined.

CA_PUT (CA f size) iy =
CA (\j . (0<=1/\ 1< size) =>
((1=3) =>y | £ 3j) | (ex.F))

size

We actually prove and use a slightly more general version. It takes a variable

rather than a constructor.

CA_PUT ar i y =
CA (\j . (0<=1/\ 1< CA_SZ ar) =>
((i=j) => y | ((CA_FN ar) j)) | (ex.F))
(CA_SZ ar)

Indexing an array also checks the array boundaries. Note that we hardcoded
the lower bounds of 0. This seems reasonable given our work in C, but it could
be easily changed, at the cost of a little more work during proofs, if arrays could

have a different lower bound.
CA_IDX (CA f size) i = ((0 <= i /\ i < size) => (f i) | (@x.F))

Upon casual inspection, one might object that this definition prevents us

from proving results about indexing an array if the size is unknown. But this

66

is entirely reasonable: if we know nothing about the size of an array, any access
may be out of bounds, and thus, undefined! However if the size is even known
symbolically and we can prove that the index is always less than this symbolic

limit, e.g. if (i<MAX) k=al[i];, the bounds checks can be satisfied.

HOL type AST type

rascii Char

:num Int

:bool Int

:void Void

:string Ptr Char

:T ptr Ptr T

:T 1list Array T (Unknown size)
:T -> U Funty T U

:’S Struct "S"

:T #...# U Struct "(T,...,U)prod"

Table 6.10: Assertion Language Type to AST

AST type HOL type
Char rascii
Int :num

Void :void
Array Char :string
Array T :T list
Ptr Char :string
Ptr T :T ptr
Struct "'S" :?’S
Struct "(T,...,U)prod" :T #...# U

Table 6.11: AST Type to Assertion Language
Although the conversion from assertion language (HOL) types to AST and

back are generally symmetrical, a few remarks are in order.

e We define one HOL type constructor, ptr, and one new type, void.

67

o In Tables 6.10 and 6.11, we leave appropriate subtype conversions implicit.
For instance, Ptr T actually converts to a ptr of the type which T converts

to, or loosely, : (ctype2hol T) ptr.

e Since HOL types may carry the complete structure (names of component
types), we represent them as an AST structure whose name is the print

representation of the HOL type.

e It may appear that information is lost since both HOL types :num and :bool
become AST type Int. However the context makes it clear when a :num

should be a :bool. See note 1, page 68.

e Note that Array Char is converted to :string, but :string is converted to
Ptr Char. This asymmetry reflects the C schizophrenia between arrays and

pointers and our attempt to model C “strings” as HOL strings.

Converting C to the Assertion Language

Variants of AST variables with nonzero disambiguators are converted to
HOL variables with an apostrophe and the disambiguator. Thus Var "x" 2 Int
becomes x’2:num, but Var "x" 0 Int becomes x:num. To simplify the table, we
only refer to a zero disambiguator, but nonzero disambiguators are handled, too.

CHAR a is defined as HD (EXPLODE a). EXPLODE turns a HOL string into a
list of HOL “ascii,” that is, characters.

Here are explanatory notes for Table 6.12.

1. The function castToBool insures that the term is type :bool. There are three
cases.
(a) If the term is already :bool, it is returned.

(b) If it is a variable, a variable of the same name, but of type :bool is

returned.

c) Otherwise term = 0 is returned reflecting C’s rule that any nonzero
g y

value is true.

2. 2 EXP P is 2 to the integer power P.

68

AST exzpression

HOL ezpression

Const (CCid "s") T
Const (CCstr "S") Char
Const (CCstr "S") T
Const (CCint N) T

Var "S" 0 (Array T M)
Var "S" 0 T

Lval E

Vref E

Aryref A i

Aryref A i
Deref E
Field S £

LUnary (Adr0f E)
Unary (Not E)

Binary E Add F
Binary E Sub F
Binary E Mul F
Binary E Div F
Binary E Mod F
Binary E ShL F
Binary E ShR F
Binary E Eq F

Binary E NEq F
Binary E Lt F

Binary E Gt F

Binary E LEq F
Binary E GEq F
Binary E And F
Binary E Or F

Binary E BAnd F
Binary E BOr F
Binary E BXor F

S:T (a symbolic constant)
CHAR "S" (:ascii)
"S" (:string)
N (:num)
CA (CAFN (S:num->T)) M
S:T
E
E
CA_IDX (EXPLODE A) i
if A is type :string
CA_IDX A i
deref E
(f:t1->t2) S
where t1 is type of S
and t2 is type of £
adrof E
~ E (note 1)
+ F
- F
* F
DIV F
MOD F
* 2 EXP F (note 2)
DIV 2 EXP F (note 2)

P2 oo B o I o I s O o I . I o B |

[o B o B |

EVF

BITAND E F (note 3)
BITOR E F (note 3)
BITXOR E F (note 3)

Table 6.12: AST Expression to Assertion Language

69

3. Bitwise functions are undefined. Their types are inferred from context. This
means we can convert expressions with bitwise operators to the assertion

language, but we can’t prove anything about their value.

6.3 Formalizing the Unix Environment
6.3.1 The File System

A large part of the Unix environment is the permanent storage, or “file sys-
tem.” In Unix terms, a file system is just one volume, partition, or disk. However
since we want to verify over everything which can be written to or read from, we
lump all disks, etc. into one conceptual file system. In particular, the output to
the user, stdout, isn’t even a file, but is modeled as one. This corresponds well
with the Unix convention of accessing I/O as a file, albeit with special drivers. At
the level of semantics which we need to prove the security of thttpd, we only need
a loose correspondence between a file path name, a unique file designator, and the
contents of the file. This is in contrast to, say, Hayes’ path-oriented description
[27]. For example, we don’t need detailed semantics of “parent directory” (the “..”
entry), multiple hard links, etc. We make extensive use of incompletely defined
functions in order to specify some relations between functions and their inputs and
outputs without modeling all the details.

We define a file system as a set of files each having a unique identification
number. The identification number corresponds roughly to an inode number. We
model it as a CArray to deeply embed the notion of changing a file, which is an
item of the array. Note that we don’t explicitly associate directories, file names,

or paths with files.
val unixFileSystem = :("unixFile # num) CArray;

We use Windley’s “records” package [43] to model a single file as a record
of permissions and contents. (This creates a type constructor, unixFile.) We
do not define the types permission or fscontents further. We do later define

relationships between functions which operate on them.

create_record "unixFile"

[("permissions", :’permission,

70

("contents", :’fscontents];

For recursive function definitions, we need an inductive definition of files.

We begin with an empty file and append strings to it.

new_constant{Name="empty_unixFile", Ty = :"unixFile};

new_constant{
Name="appendFile",Ty = :string->"unixFile->"unixFile

};

le £f. 7!fn.
(fn (empty_unixFile:"unixFile) = (e:’a)) /\
('n o. fn (appendFile n o) = £ (fn o) n o)

We must distinguish between output to the user, stdout, and output to
other files. For instance, writing to stdout cannot compromise information integrity
(since stdout is not a part of the “real” file system) and anything written to stdout
must nonconfidential (since the user sees it). We create a special constant to

represent it in specifications and system axioms.
new_constant{Name="SYS_stdout", Ty = :num};

We incompletely define two functions. The first, inodeNamed, represents
the mapping from names to file (roughly, inode) numbers. Since the way names
map to files doesn’t affect security, its type (and testing equality between instances)
is all the specification we need. The second function, getFile, maps numbers to
files in a file system. These can be thought of as primitive or abstract “look up”

functions.

new_constant{Name = "inodeNamed", Ty = :string->num};
new_constant{
Name='"getFile",Ty = :"unixFileSystem->num->"unixFile

};

We model the state of a file system as a predicate from inodes to files. This

predicate may be thought of as a snapshot of the contents of each file.

71

I P fs . SoFS P fs = (!inode. P inode (getFile fs inode))

Since we are verifying how code changes state, rather than what the state abso-
lutely is, we can phrase our partial correctness conditions relatively. Informally
the condition will be something like this: “if the file system begins in some state
P and we run code C, the state will still be P for all files except perhaps for the
log file.” This looks something like the following.

- {SoFS P £s} C
{Vinode.inode # logfile = P inode (getFile fs inode)}

Finally we define a distinguished constant meaning the file system.
val SYS_FileSystem = (--‘SYS_FileSystem: unixFileSystem‘--);

To define operating system calls, Sect. 6.4, and use them in proofs, we
partially define additional predicates and relations. The function inodeOf returns
the file number of the file indicated by a FILE pointer. It is a logical or conceptual
function in that the mapping is not an actual data structure available in Unix.
Indeed, the notion we use of uniquely identifying files by number is only loosely

embodied in Unix i-nodes.
new_constant{Name = "inodeOf", Ty = :’FILE->num};

To partially specify its semantics, we define that the inodeOf of a “handle”

of an inode is that inode. We also define that fopen() never returns stdout.
|- ! inode type.
inode0f (deref (FOPEN_handlefn inode type)) = inode
- ! inode type.
“(inode0f (deref (FOPEN_handlefn inode type)) = SYS_stdout

Similarly to inode0f we define that function inode0fFileDes returns the
file number of the file indicated by a file descriptor. We also define that file

descriptor 1 is stdout.

72

new_constant{Name = "inodeOfFileDes", Ty = :num->num};

- inode0fFileDes 1 = SYS_stdout

To prove file system confinement, we must formalize some Unix behavior
related to relative paths. Rather than define directories, path names, root direc-
tories, parents, current working directory, and so forth, we just axiomatize some
relations. The predicate resolvePath is intended to represent the path resolution:
. means the current working directory (cwd), .. is cwd’s parent unless cwd is root,
/... starts from root, etc. The auxiliary predicates dirParent and resPathRest
are place holders for the rest of the functionality which we don’t need to define
for the proof: dirParent returns the parent of a directory and resPathRest does

everything else (relative and absolute paths).

new_constant{Name = "resPathRest",
Ty = :string->string->string->string};
new_constant{Name = "dirParent",

Ty = :string->string};

! root cwd path .
resolvePath root cwd path = (
(path = ".") => cwd |
(path = "..") =>
((cwd = root) => root | dirParent cwd) |
resPathRest root cwd path)
)

6.3.2 Process ID and Permissions

In Unix systems®, processes have identification numbers pertinent to our
work: user ID (UID), representing the person running the program, and group ID
(GID), representing the person’s group affiliation. To allow a program to run as
a surrogate for the owner, a process, which is created with the ID of the process

starting it, may change or set its UID to its owner under some circumstances. To

3Much of this section was taken from [8, App. B].

73

keep track of this, each process actually has three IDs: the real ID, the “effective”
ID (the ID which it is using), and a “saved” ID. We model all of these as global
values which can only be set through the appropriate system calls.

Files also have a UID and a GID, and have three sets of permissions:

e those for the file owner (“user”),
e those for people in the same group as the file (“group”), and

e those for any other person in the world (“other”).

If the process’ UID matches the file UID, user permissions are checked to authorize
the operation. If the UID’s don’t match, but the GID’s match, group permissions
are checked. If neither UID’s nor GID’s match, the “other” or world permissions
are checked.

Although permissions are typically used hierarchically, it need not be so.
Thus a file may be readable by everyone on the system except the owner, if it has

read permission for others but no read permission for the owner.

6.4 Operating System and Library Calls

For completeness, we must consider the axioms of input/output calls, mis-
cellaneous operating system calls and library functions, for a proof is no better
than the axioms upon which it is based.

In this section we explain some of the problems and nuances of axiomatizing
system calls, Sect. 6.4.1, and leave the details for Appendix B. We also explain
the assumption we made to prove security, Sect. 6.4.2, and give a guidebook with

hints on formalizing functions, Sect. 6.4.3.

6.4.1 Nuances of Axiomatizing System Calls
Negative Numbers

Several operating system calls return -1 to indicate an error which thttpd
sometimes acts on. However throughout the rest of the formalization the built-in
natural numbers (HOL num’s) serve as a good model of C int’s. To handle error
checking for system calls, we took a short cut of partially defining int neg to

represent the negative or unary minus operator. Here is the definition.

74

new_constant{Name = "int_neg", Ty = :num->num};
We wrote some axioms to prove theorems containing int_neg.
(* int_neg is one-to-one *)

|- ' ii’> . (int_neg i = int_neg i’) = (i = 1’)

(* int_neg returns 0 for 0 *)

|- int_neg 0 = 0
(* int_neg is never greater than 0 *)
|- 'i . “(int_neg i > 0)

Although these axioms lead to an inconsistency, as shown below, we believe our

proof is valid.

1. |- (int_neg 0=int_neg 1)=(0=1) by axiom that int neg is one-to-one.
2. |- (int_neg O=int_neg 1) = F by 1 and arithmetic.

3. |- (0=int_neg 1) = F by 2 and axiom that int neg returns 0 for 0.

4. |- “(int_neg 1 > 0) by axiom that int neg is never greater than 0.

5. |- int_neg 1 <= 0 by 4 and theorem NOT_GREATER.

6. |- int_neg 1 = 0 by 5 and theorem LESS_EQ_0 (since HOL uses natural

numbers).
7. |- (0=0) = F by 3 and 6.
8. |- T = F by 7 and arithmetic.
9. |- F by 8 and boolean logic.

Why not model int’s as integers? When we began, there was not a good
package in HOL to handle arithmetic on integers, as there was for the built-in num’s.
Also computers only handle a range of integers (with overflow handling differing

from language to language), so integers are not a precise model, either. Since the

75

program used negative numbers only marginally, we felt the minor benefit would
not be worth the effort. We were wrong.

Modeling negative numbers as natural numbers unavoidably introduced an
inconsistency. We did not redo our model because it would take extensive rework
and the actual effect on the proof would be small.

The reader may ask, why not use a special type to represent the return
value from chdir(), fprintf(), open(), etc.? In some cases, the return value
is not used at all, which is no problem. In other cases, the return value is only
compared with zero (if (0 != fn()) ...). We should be able to accommodate
this by adding another implicit “type casting” to the conversion from AST to
assertion language (Sect. 6.2.7). However there are cases where the return value is
saved in a variable for later use. Using a special type implies changing the types
of some variables because of the context of their use. This would be somewhat
complex, ad hoc, and strays from the C model.

If any changes are made in this facet, we recommend modeling at least with
full integers rather than more limited measures like modeling with a special type
or natural numbers. The complexity of the model and the proofs increases very
little and may, in fact, decrease. Even though integers are not a precise model,
another proof phase could show that with certain assumptions about the size of

int’s, there is no overflow.

Unstructured Flow

We don’t model nonstructured jumps well, so the axiom for exit () is par-
ticularly poor. As coded exit() produces a totally undefined state. This allows

us to prove theorems for “filter” conditionals, such as the following.
F{T} if (x < 0) exit(1); {z > 0}

The postcondition follows if the test fails. To cover the case that the test succeeds,

we must prove the following, which we can now.

F{TAz <0} exit(1); {z > 0}

76

Unfortunately the current coding of exit() prevents us from analyzing the final

state of the program formally. It also allows us to prove the following.
F{T} exit(1); y=x; {y > 0}
Since we can prove this intermediate.
F{T} exit(1); {z > 0}

Therefore total correctness must be more specific in that the statement not only
terminate, but execution reaches the final statement (reachability).

Instead exit () should be coded to express a transfer of control to the end of
the program. One possible remedy is to use multiple post conditions, as suggested
in [1] and refined for C in [38]. The exit () call, and thus main() and thttpd itself,
would have F as the “sequence” postcondition and the constraint as the “exit”
postcondition. We would then have to prove that execution actually reaches the
points of interest, as opposed to the unreachable y=x; above, in addition to partial

correctness.

Varargs

We approximate “varargs” (a function with a variable number of argu-
ments) by giving the fixed components, in this case stream and format, then
a special variable, varargs. The special variable is bound to the actuals by
specialize varargs in the function call inference rule, Table 6.8, page 64. How-
ever we cannot specify, for instance, that scanf () may change the memory indi-

cated by the pointers.

Description Precision

The call axioms are not complete descriptions by any stretch of the imag-
ination. They model enough of the function for our proof. In many cases we
can make the description accurate (correct), but not precise (incomplete) by using
underdefined functions.

Consider our call axiom for read (). This function tries to read up to nbyte

bytes from the file descriptor, filedes, into a buffer, buf.

[

|- WF_fnp (T)
(Func (Var "read" 0 Int)
[Var "fildes" 0 Int; Var "buf" 0 (Ptr Char);Var "nbyte" 0 Int]
[Var "errno" 0 Int] NOBody)
((C_Result = int_neg 1) /\ (7READ_errno.errno=READ_errno) \/
(C_Result = 0) \/
“(~fildes int_neg 1) /\ (C_Result > 0) /\
(C_Result = readSpec("fildes, “buf, “nbyte)))

The return value, C_Result, and the final state of the buffer and the file

descriptor depend upon many factors:
1. whether the file descriptor is valid, and it was opened for reading,
2. whether the file is capable of seeking,
3. the mode, if it is a STREAMS file,

4. exactly when and which type of interrupt (signal, in Unix) is received, if one

is received,
5. whether the descriptor or object are marked for non-blocking 1/0, and
6. how many bytes are left before the end of the file.

However, to prove that thttpd is secure, little of this matters. The axiom only dis-
tinguishes between the three cases of an error return, (C_Result = int neg 1) A
(?READ errno.errno = READ errno), an end of file return, (C_Result = 0), and
a successful read, ¥ ("fildes = int neg 1) A (CResult > 0) A (CResult =
readSpec(“fildes, "“buf, “nbyte))). The function readSpec() is underspeci-
fied. We only give the number of arguments, and, implicitly via HOL type infer-
ence, the return type and types of arguments. Nothing else about readSpec() is
formalized. This underspecification lets us formalize the parts which are needed
for the proof, while saving enormous amounts of time and keeping the specification
simpler to understand. The axiom has limited precision, but is still accurate.

Of course, in the future another program or proof of a different property of

this program may need a more precise or detailed formalization. Then readSpec()

78

may be defined in more detail. The general question of how one would provide a
completely accurate description, yet easily extract those parts which are relevant

to the proof is open.

6.4.2 An Assumption

The correctness of thttpd depends on a specific fact about the parameters
passed to a starting program. In C a program starts by the system calling a
particular function, main(). It is passed an array of strings, called argv in thttpd,

and the size of the array, called argc.
Assumption 1 (argc_Arraysizeargv) CA_SZ argv = argc

In main() we depend on the fact that argc is, indeed, the size of the array,
argv. With this assumption, we can infer that the accesses to argv in the following

thttpd code are valid.

if (arge>1) strncpy(remotehost,argv[1],MAXSIZE);
else strcpy(remotehost,"nowhere");
if (arge>2) strncpy(remoteuser,argv[2] ,MAXSIZE);

else strcpy(remoteuser,"nobody");

6.4.3 A Guidebook to Formalizing System and Library Calls

We must write axioms for operating system calls and library functions in-
stead of proving theorems since we don’t have source code. Even if we did, the
theorems would be tied to a particular implementation. We can view the axioms
as specifications. However even figuring out how to express some behaviors can be

difficult. This section has some hints for formalizing calls.

Verify Skeleton Code

The first suggestion is to write a piece of skeleton code and verify it to get
the “form” right. For example, the chdir() function may succeed or fail. If it
succeeds, it sets the current working directory and returns 0. If it fails, the global
variable errno is set and -1 is returned. The following code roughly embodies this

behavior.

79

int chdir(char *path)
{
if (nondeterministic==0)
C_Result=0;
else
C_Result=1;
if (C_Result==0)
SYS_cwd=path;
else

errno=CHDIR_errno;

The code is simple enough to prove quickly, yet, it models several features

which are important to our verification.

Level of Detail

Formalize only as much as necessary for the proof. Begin with underdefined
functions, general definitions, or assumptions, and only define them in more detail
as needed for the proof. It is not uncommon to only need a few high-level theorems
about a function.

At one time our proof depended on the fact that the time formatted to
YY/MM/DD HH:MM:SS is always a string less than 20 characters since we copy it
into a buffer of 20 characters. More formally, strlen(strftimeSpec("%Y/%m/%d
%T",s))<20. (In fact, the string is always 18 characters. Since we ignore many
possible memory overwrite problems, our final proof doesn’t depend on on this
anymore.)

Here was an interesting trade-off: we could have specified in great detail
how strftime works, how it formats %Y and %m, etc., and proven the above as a
theorem. However since the details were never needed and since it is a very minor
point in the proof, we chose instead to make it an assumption. It turns out that

subsequent changes in the proof eliminated the need for the theorem altogether.

80

Logical vs. Program Variables in WF_fnp

Only program variables may appear in function call (WF_fnp) preconditions.
Logical variables may not be used. For instance, in fprintf() we have a precon-
dition on the state of the file system.

Postconditions may contain both program variables and logical variables. A
logical variable denotes the value of the variable at the time of entrance. A program
variable denotes the value of the variable at the time of exit. The postcondition
expresses the logical relation between these two sets of values, thus describing the

effect of calling the procedure [32, pp. 68-69].

Formal Parameters in Postconditions

Postconditions should be written in terms of logical versions of pass-by-
value formal parameters, not program versions. Suppose we have the following

function.

int INC(int p)
{

return (p+1);

The following is a theorem (a brief version of the AST is shown).

WF_fnp {T} (Func(Var "INC” Int) [Var "p” Int] []...)
{CResult = "p+ 1}

Notice that we use the logical version of the formal parameter, that is “p instead
of just program version, which would be p. If we do not use the logical version,

the actual is not substituted for the formal in the Call rule A.3.

Global Variables in Conditions

Global variables can be included directly in preconditions. In postcondi-
tions, they should be coded as above: values at entrance are denoted by logical
variables, values at exit are denoted by program variables. Given the following

function,

81

int aglobal;

int accum(int p)
{
aglobal = aglobal + p;

We can prove the following theorem.

WF_fnp {T} (Func(Var "accum” Int) [Var ”p” Int]
[Var "aglobal” Int]...)
{aglobal = "aglobal + "p}

Failures or Multiple Results

Most operating system calls have multiple, distinct outcomes. For instance,
fprintf () may write to a file on disk, or, if the disk is full, it may fail. From the
point of view of the program, the calls have nondeterministic results.

Nondeterminism may be modeled as a disjunction of possible postcondi-
tions. For example, fprintf () returns the number of bytes written if it succeeds

or a negative number if it fails. It can be partially modeled as

F {T} fprintf(fp, format,...);
{(CResult < 0) V (C_Result > 0 A changes to fp)}

82

CHAPTER 7

THE PROOF

We finally come to the proof itself. Unfortunately it is not clear how best to
present the proof. The fully formal, machine-mediated proof is about 3,300 lines
of HOL commands in 18 files. But the purpose of a proof is to convey informa-
tion, usually to increase one’s confidence in a theorem [15]. We also wanted to
demonstrate that a proof can help one gain additional insight into a program, its
assumptions, domain of correct operation, limitations, etc., in addition to increas-
ing confidence in its correctness.

Instead of the complete proof, this chapter is a summary of the proof. We
give the significant theorems and lemmas leading up to the theorem of security. For
the proof of each theorem we give conditions for each C code statement, informal
explanations of the steps of the proof, and various notes. We hope to present
enough detail to show the intermediate conditions we found useful and when and
how we used axioms, definitions, and theorems. Section 7.2 explains the actual
software architecture of thttpd and gives a very high level outline of the proof: the
theorems we prove and the order of presentation. The http server was designed with
redundant features to be secure even in the presence of some failures. Section 7.1
discusses possible future work about proving feature independence.

The top-level theorem of security is a conjunction of the highest level prop-
erties of confidentiality and information integrity. In other words, we can prove
that thttpd is secure if we show that it has confidentiality and information in-
tegrity as mentioned in Chapter 3. Section 7.3 is the proof that thttpd maintains
confidentiality, and Sect. 7.4 is the proof of information integrity. Section 7.5,
gives the almost-trivial proof that thttpd is secure, that is, that calling thttpd’s

main() routine maintains security.

7.1 Proving Design Features Independently

The properties of confidentiality and information integrity are established

in thttpd by multiple, redundant design features. One could imagine exploring

83

this intentional redundancy by proving that a property holds when only one or two
of the features hold [7]. For instance confidentiality is established by just file input
confinement (reading only files which are owned by “www” and “world” readable)
or just file system access confinement (using chroot() to only access files in the
“web” area). Unfortunately this is beyond the scope of this “simple” proof.

One possible approach for the future is to prove weaker high level properties.
For instance, rather than formally defining confidentiality as file input and file
system confinement, we could define it to be file input or file system confinement.
We could then prove that confidentiality is maintained given either feature alone.

However, since the code actually has both properties, we must make sure we
prove them independently. For instance, we may not notice that we are proving file
input confinement piece by piece while proving file system confinement. Hoffman
gives [31] the following method to determine feature independence. For each of n
features p;, find the smallest set of axioms A(p;) upon which that feature depends.
Feature 1 is independent of other features if and only if its set of axioms is not a
subset of any other features’ axioms, that is, A(p;) € Uj=1,. i 1441,..n A(p;). If no
feature’s axioms is a subset of the others, the features are independent.

If we were concerned about particular failures, we could model those by
writing modified system axioms incorporating those failures. Exploring possible
failures is probably more profitable through fault trees or some other probabilistic

analysis rather than formal proofs.

7.2 Overview

Although the code for the latest version of thttpd is given in App. C, we
explain here the structure of the code, since the proof is similarly structured. We

then briefly relate each of the major theorems.

7.2.1 Structure of thttpd

The function call tree of thttpd is given in Fig. 7.1. Strictly speaking LOG2
and LOG4 are macros, not functions, but the way they are written allows us to
treat them functions. When a request arrives at the server, thttpd is started.

The main() routine establishes confinements, parses the input, and checks that

84

main

fetch

cat error)

logfile

Figure 7.1: Function Call Tree for thttpd

the request is a “get.” If everything is okay, it calls fetch() which first checks
security for the requested file. If the file is public, fetch() calls cat(), logs the
request, and exits. cat () opens the file, copies the contents to the user, then closes
it. The function error() returns an error message to the user, logs it, and exits.
L0OG2 and L0OG4 open the log file, call logfile() to write a timestamp, then they
write their message and close the log.

As we mentioned above, we prove one theorem that thttpd maintains con-
fidentiality and another theorem that it maintains information integrity. Each
theorem proceeds by proving a confidentiality or information integrity property
theorem for each function beginning from lowest level of the function call hierarchy
to the highest level. Table 7.1 summarizes the confidentiality theorems, or briefly,
that users cannot access information not marked for the public. Table 7.2 sum-
marizes the information integrity theorems, or, that users cannot cause thttpd
to change the file system, except for the log file. In the cases of fetch() and
error(), we actually prove the function never returns, however the table shows
the penultimate condition.

We almost always use backward proofs. That is, we state the theorem to
be proved, and break it down into simpler and simpler sufficient conditions or sub-

goals. Each simplification step must be, of course, justified by our inference rules.

85

If the file pointer passed is not stdout, confidentiality is

logfile() o
maintained.
L0OG2 Confidentiality is maintained.
L0G4 Confidentiality is maintained.
If the error message passed is not confidential, confiden-
error() e . L
tiality is maintained.
cat O If the named file has a public owner and permission and
the file system is confined, confidentiality is maintained.
fetch() If.the file system is confined, confidentiality is main-
tained.
main() Confidentiality is maintained.
Table 7.1: Confidentiality Theorems
logfile() Nothing is changed, except possibly the file passed.
L0OG2 Nothing is changed, except possibly the log file.
L0G4 Nothing is changed, except possibly the log file.
error() Nothing is changed, except possibly the log file and
stdout.
cat () Nothing is changed, except possibly stdout.
fetch() Nothing is changed, except possibly the log file and
stdout.
main() The function never returns.

Table 7.2: Information Integrity Theorems

86

The proof of each theorem proceeds from the beginning of the function to the end,
emulating in some aspects the flow of control. Since we use axiomatic semantics,
steps are annotated primarily by giving the postcondition for each statement. (The
precondition is the preceding step’s postcondition.) We give many details in the

first proofs, and skip progressively more in later proofs for brevity.

7.3 Proving Confidentiality
7.3.1 logfile()

Theorem 1 (WF _fnp_cf_logfile)

WF_fnp

(SoFS hasConfidentialityFile SYS_FileSystem A
~(inodeOf (deref F) = SYS_stdout))

(Func (Var "logfile” 0 Void)

[Var "F” 0 (Ptr (Struct "FILE”))]

[Var "errno” 0 Int,
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”);
Var ”SYS_FileSystem” 0 (Struct array of files)]

(SOMEBody ...))

(SoFS hasConfidentialityFile SYS_FileSystem)

The predicate WF_fnp takes three arguments: a precondition, a function declara-

tion, and a postcondition. The function declaration is

1. the function name and return type,
2. the parameter list!,

3. a list of all the global variables which this function might read or change,

either directly or through functions it calls, and

!Square brackets ([and]) delimit a list.

87

4. the AST of the body code of the function (elided for brevity). Instead the

original C code is shown at each step of the proof.

Informally this theorem says, if the file system has confidentiality (State of File
System hasConfidentiality) and we won’t be writing to stdout (the file pointer
F is not stdout), then when logfile() finishes, the file system will still have
confidentiality. The predicate SoFS applies the predicate hasConfidentiality-
File, in this case, to every file in the file system, SYS FileSystem.

Proof.

By rule 6.2, page 62, we reduce this to proving that the call is syntactically
correct and the partial correctness of the body block, with formals initialized to
actuals. By rule 6.1 and the function call axioms SYS fprintf, SYS_localtime,
SYS_ strftime, and SYS_time, we prove that the call is syntactically correct?. Then
by the block inference rule in Table 6.7, page 63, we reduce the proof of the body
block to a proof of the body (code).

Since the proof of every function uses rules 6.2 and 6.1 and the body infer-
ence rule similarly, in future proofs we will only mention the function call axioms

and theorems used.

1. t=time (NULL);

Postcondition:

(F = °F) /\ (SoFS hasConfidentialityFile SYS_FileSystem) /\
~“(inode0f (deref F) = SYS_stdout) /\

(?some_time.t = some_time)

The first three clauses follow from the precondition. (The first clause shows
the initialization of the formal variable with a logical value representing the
actual variable’s value.) The last follows from SYS_time with the following

intermediate condition and assignment.

2The primary concern is that all global variables used by called functions are listed as global
variables used by this function.

88

(F = °F) /\ (SoFS hasConfidentialityFile SYS_FileSystem) /\
~“(inode0f (deref F) = SYS_stdout) /\

(?some_time.C_Result = some_time)

Note that we do not exclude the possibility that time() returns -1. Fortu-

nately localtime() seems to behave acceptably with a negative time.

. strftime(timestamp, 20, "4Y/%m/%d %T", localtime(&t));

Postcondition:

(F = "F) /\ (SoFS hasConfidentialityFile SYS_FileSystem) /\
~“(inode0f (deref F) = SYS_stdout)

First, we separate the effect of the call to localtime() with the following

intermediate condition.

(F = "F) /\ (SoFS hasConfidentialityFile SYS_FileSystem) /\
~“(inodelf (deref F) = SYS_stdout) /\
(?tsptr.C_Result = tsptr)

The first three follow from the precondition. The last follows from
SYS localtime, that is, the result is a pointer to a time structure. The

postcondition follows from the intermediate and SYS strftime.

. fprintf(F,"%s %s %s ",remotehost,remoteuser,timestamp) ;

The postcondition is the function postcondition. It follows from SYS fprintf
specialized with the predicate hasConfidentialityFile, the definition of
hasConfidentialityFile, and the precondition that F is not stdout.

7.3.2 L0OG2

Theorem 2 (WF _fnp_cf LOG2)

WF_fnp

(SoFS hasConfidentialityFile SYS_FileSystem)
(Func (Var "LOG2” 0 Void)

89

[Var "z” 0 (Ptr Char); Var ”y” 0 (Ptr Char)]

[Var ”SYS_FileSystem” 0 (Struct array of files);
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”); Var "errno” 0 Int;
Var ”"SYS_cwd” 0 (Ptr Char); Var ”SYS_root” 0 (Ptr Char);
Var "WWWlog” 0 (Ptr Char)]

(SOMEBody ...))

(SoFS hasConfidentialityFile SYS_FileSystem)

Informally, if the file system is confidential, then when LOG2 finishes, the
file system will still be confidential.

Proof:

The top level correctness is proved with the theorem WF _fnp_cf logfile and
the axioms SYS_fopen, SYS fprintf, and SYS fclose.

1. F = fopen(WWWlog,"a+");

Postcondition:

(SoFS hasConfidentialityFile SYS_FileSystem) /\

((F = NULL) \/

(?FOPEN_handlefn . F =
FOPEN_handlefn(inodeNamed WWWlog) "a+"))

The first clause follows from the precondition. The second clause follows

from SYS fopen with the following intermediate condition and assignment.

(SoFS hasConfidentialityFile SYS_FileSystem) /\

((C_Result = NULL) \/

(?FOPEN_handlefn . C_Result =
FOPEN_handlefn(inodeNamed WWWlog) "a+"))

90

2. if (F '= NULL) {logfile(F);fprintf(F,x,y);}

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem

We use IFTHEN_TAC and BLOCK_TAC to get to the body of the conditional.

We prove it as follows.

(a)

Strengthen the precondition to say the file system is confidential and F

1s not stdout.

(SoFS hasConfidentialityFile SYS_FileSystem) /\
~“(inode0f (deref F) = SYS_stdout)

We prove that the stronger precondition follows with the axiom fopen-

Handle not_stdout.
logfile(F);

Postcondition:

(SoFS hasConfidentialityFile SYS_FileSystem) /\
~“(inode0f (deref F) = SYS_stdout)

This follows from the precondition and WF _fnp_cf logfile.
fprintf(F,x,y);

Postcondition is the if statement postcondition. It follows from the

definitions of SoFS and hasConfidentialityFile and SYS_fprintf.

3. fclose(F);

The postcondition is the function postcondition. It follows from SYS fclose.

7.3.3 L0G4

Theorem 3 (WF _fnp_cf LOG4)
WF_fnp
(SoFS hasConfidentialityFile SYS_FileSystem)
(Func (Var "LOG4” 0 Void)

91

[Var "z” 0 (Ptr Char); Var ”y” 0 (Ptr Char);
Var ”z” 0 (Ptr Char); Var "w” 0 (Ptr Char)]

[Var ”SYS_FileSystem” 0 (Struct array of files);
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”); Var "errno” 0 Int;
Var "SYS_cwd” 0 (Ptr Char); Var ”SYS_root” 0 (Ptr Char);
Var "WWWlog” 0 (Ptr Char)]

(SOMEBody ...))

(SoFS hasConfidentialityFile SYS_FileSystem)

Proof:

The proof of LOG4 is nearly identical to that of LOG2.

7.3.4 error()

Theorem 4 (WF _fonp_cf_error)
WF_fnp
(SoFS hasConfidentialityFile SYS_FileSystem A nonConfidentialS s)
(Func (Var "error” 0 Int)
[Var ”s” 0 (Ptr Char)]
[Var ”SYS_FileSystem” 0 (Struct array of files);
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”);
Var "errno” 0 Int; Var "WWWlog” 0 (Ptr Char);
Var ”"SYS_root” 0 (Ptr Char); Var "SYS_cwd” 0 (Ptr Char);
Var "bs1” 0 (Array Char (CCid "BUFSIZE”));
Var "name” 0 (Array Char(CCid "BUFSIZE”))]
(SOMEBody ...))

(F)

92

Informally, if the file system is confidential and the string passed is not
confidential, then error() never finishes. This is a poor postcondition, but we
cannot express it better since we cannot give a condition for a transfer of control
other than the next sequential statement. As we explain in Sect. 6.2.1, this may be
expressed with a more elaborate model. For now we settle for manually inspecting

that the final condition is “the file system is still confidential.”

Proof:

The top level correctness is proved by the theorem WF fnp _cf LOG4 and
the axioms SYS_exit and SYS_printf.

1. printf ("HTTP/1.0 302 Found\n");
printf("Server: ManAl/0.1\n");
printf ("MIME-version: 1.0\n");
printf (REDIRECT) ;
printf("Content-type: text/html\n");
printf ("<HEAD><TITLE>Document moved</TITLE></HEAD>\n");
printf (""<BODY><H1>Document moved</H1>\n");
printf (ERRORLINE) ;

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\

nonConfidentialS s

We prove these all with the same postcondition using the axiom SYS_printf,
the definition of SoFS, hasConfidentialityFile, and nonconfidentiality of fixed

strings and parameters.

2. printf("(%s) </BODY>\n",s);

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\

nonConfidentialS s

93

We prove this similarly, except we use the precondition that the string passed

is nonconfidential, so writing it doesn’t compromise confidentiality.

3. LOG4("Error:%s - %s %s\n",s,bsl,name);

Postcondition:
SoFS hasConfidentialityFile SYS_FileSystem

We prove this from the precondition and the theorem WF _fnp_cf LOG4. We
note that the precondition to the last command shows that the file system is
still confidential, so we are satisfied, even though we cannot formally prove

what we want.

4. exit(1);

The postcondition is the function postcondition. We prove it with the axiom
SYS exit.

7.3.5 cat()

Theorem 5 (WF _fnp_cf_cat)
WF_fnp
(SoFS hasConfidentialityFile SYS_FileSystem A
nonConfFileOwner (inodeNamed s) N
nonConfFilePerm (inodeNamed s) N
fsconfined SYS_cwd SYS_root)
(Func (Var ”cat” 0 Void)
[Var ”s” 0 (Array Char (CCid "UNK”))]
[Var ”SYS_FileSystem” 0 (Struct array of files);
Var ”SYS_root” 0 (Ptr Char); Var ”SYS_cwd” 0 (Ptr Char);
Var ”SYS_stdout” 0 Int; Var "errno” 0 Int;
Var "bs2” 0 (Array Char (CCid "BUFSIZE”))]
(SOMEBody ...))
(SoFS hasConfidentialityFile SYS_FileSystem)

Informally, if

94

e the file system is confidential,

e the file named “s” is for outside viewing (the owner and permissions show

that it is nonconfidential), and

e the current working directory and file system root are properly confined,

then when cat () finishes, the file system will still be confidential.

Proof:

Top level correctness is proved with the axioms SYS_open, SYS_read, SYS_
write, and SYS close.
1. i=open(s,0);

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
("(1 = int_neg 1) ==> nonConfidentialFD i)

The second clause of the postcondition says if the open succeeds, i is a non-
confidential file descriptor. We prove this by separating the call to open()
with the intermediate condition below, using the axiom SYS open, the defi-

nition of nonConfidentialFD, and assignment.

SoFS hasConfidentialityFile SYS_FileSystem /\

(" (C_Result = int_neg 1) ==> nonConfidentialFD C_Result)
2. while ((n=read(i,bs2,MAXSIZE)) > 0) write(1,bs2,n);

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
("(1 = int_neg 1) ==> nonConfidentialFD i)

We prove this using the following as an intermediate condition (that is, the
test state in Fig. 5.4) after the side effects in the test expression. We break
the while loop into proving the cases outlined below: termination, test ex-

pression yields the test state, and the body reestablishes the invariant.

95

SoFS hasConfidentialityFile SYS_FileSystem /\

(1

= int_neg 1) ==> nonConfidentialFD i) /\

(n > 0 ==> nonConfidentialS bs?2)

Notice we added the condition that says, in essence, anything in the buffer

bs2 is confidential if something was read. The specification of read() al-

lows it to arbitrarily not read characters. Since information would only be

written to the user, and possibly be of concern, if something was read, this

seemed easier than defining that the buffer is initialized to nonconfidential

information.

(a)
(b)

We prove the termination condition with standard logic analysis.

Using the axioms SYS read and int_neg is never greater than 0, the
definition that anything read from a nonconfidential file descriptor is
nonconfidential, assignment, and the following intermediate condition,

we prove that the “test state” follows from test expression.

SoFS hasConfidentialityFile SYS_FileSystem /\
("(i = int_neg 1) ==> nonConfidentialFD i) /\
(C_Result > 0 ==> nonConfidentialS bs2)

We are left with showing that executing the body (the write() call)
reestablishes the invariant. We use the axiom SYS_write and the defi-

nitions of SoFS, hasConfidentialityFile, nonConfidential, and nonCon-
fidentialS.

3. close(i);

We prove that executing close() results in the function postcondition using

the axiom SYS_close.

7.3.6 fetch()

Theorem 6 (WF _fnp_cf_fetch)

WF_fnp

(SoFS hasConfidentialityFile SYS_FileSystem A fsconfined SYS_cwd SYS_root)

96

(Func (Var ”fetch” 0 Void)

[]

[Var "hs1” 0 (A,,.'ra,y Char (OO’Ld ”BUFSIZE”)),’

Var
Var
Var
Var
Var
Var
Var
Var
Var
Var

"bs2” 0 (Array Char (CCid "BUFSIZE”)),

"name” 0 (Array Char (CCid "BUFSIZE”));
“remotehost” 0 (Array Char (CCid "BUFSIZE”));
"remoteuser” 0 (Array Char (CCid "BUFSIZE”));
"timestamp” 0 (Array Char (CCint 64));
"CHECKUSER” 0 Int; Var "WWWlog” 0 (Ptr Char);
"TZ7 0 (Struct "TZstruct”); Var "errno” 0 Int;

"buf” 0 (Struct "stat”); Var "SYS_stdout” 0 Int,
"SYS_FileSystem” 0 (Struct array of files);

"SYS_cwd” 0 (Ptr Char); Var "SYS_root” 0 (Ptr Char)]

(SOMEBody ...))

(F)

Informally if the file system has confidentiality and the current working

directory and file system root is confined to the “web space,” then when fetch()

finishes, confidentiality is maintained. Since the function exits rather than returns,

our model forces us to specify the postcondition as “impossible” (false).

Proof:

We prove top level correctness with the theorems WF _fnp_cf cat, WF _fnp_
cf_error, and WF fnp_cf LOG2, and the axioms SYS geteuid, SYS_exit, SYS stat,
SYS_S_ISREG.

1. staterr=stat(name,&(buf));

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\
((staterr = 0) /\ (buf=statSpec name SYS_cwd SYS_root) \/

(staterr = int_neg 1))

97

We prove this using the axiom SYS stat, the intermediate condition below,
the axiom that the dereference of an address-of yields the original, buf in this

case, and assignment.

SoFS hasConfidentialityFile SYS_FileSystem /\

fsconfined SYS_cwd SYS_root /\

((C_Result = 0) /\ (buf=statSpec name SYS_cwd SYS_root) \/
(C_Result = int_neg 1))

. if (staterr '= 0) error("Can’t stat file");

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\
(buf = statSpec name SYS_cwd SYS_root)

We begin by breaking the conditional into two cases: the skip or exit case, if
the test is false, and the body case. We prove the exit case with the lemma
that int_neg 1 is not 0. We prove the body with WF fnp_cf error and the

axiom that the constant string "Can’t stat file" is nonconfidential.

. if (0 == S_ISREG(buf.st_mode))

error("Can’t fetch directories");

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\
(buf = statSpec name SYS_cwd SYS_root)

Although the test is more complicated and takes more work, the proof of this
statement is similar. The proof of the test uses the axiom SYS_S_ISREG and
the condition is unchanged. Since we don’t really model directories, this line

of code doesn’t contribute anything to the condition.

98

4. if (CHECKUSER==1)
if (buf.st_uid !'= geteuid())

error ("Not owner of file");

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\
(buf = statSpec name SYS_cwd SYS_root) /\

nonConfFileOwner (inodeNamed name)

The thttpd server may be installed to check or not check that server process
owns the file. So the definition of nonConfFileOwner is if CHECKUSER is 1,
the file owner must match the process owner, otherwise every file is assumed

to have nonconfidential file ownership.

The proof proceeds much the same as before, breaking the conditionals into
cases, and uses the axioms SYS_geteuid and the constant string is noncon-
fidential, the definition of nonConfFileOwner, and the theorem WF fnp_-

cf_error.

5. if (0 '= (S_IROTH & buf.st_mode)) {
cat(name); LOG2("cat %s\n",name); exit(1l);
}

Postcondition:
SoFS hasConfidentialityFile SYS_FileSystem

Since cat () sends the file to the user, we no longer need the qualifiers, so the
postcondition is simply that the file system (still) has confidentiality. The
proof begins by breaking the conditional into cases. The exit condition is

easily proved from the precondition. The body is proved as follows.

(a) cat(name);

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem

99

Once again, after cat() is done, we don’t need the other conditions.
The biggest challenge is showing that the preconditions of cat() are

satisfied. First, we strengthen the precondition to the following.

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root/\
nonConfFileOwner (inodeNamed name) /\

nonConfFilePerm (inodeNamed name)

Then the definition of nonConfFilePerm lets us prove the strengthening
is valid, and the theorem WF _fnp_cf cat finishes this step.

(b) LOG2("cat %s\n",name);

The postcondition remains the confidentiality of the file system. We
prove this with WF _fnp_cf LOG2.

(c) exit(1);

We can easily prove the overall postcondition since SYS_exit has a post-

condition of false.

6. error("Access Denied");

Using the theorem WF fnp_cf_error and the nonconfidentiality of the constant

string, we prove the function postcondition.

7.3.7 main()

Theorem 7 (main() Confidential)
WF_fnp
(SoFS hasConfidentialityFile SYS_FileSystem)
(Func (Var "main” 0 Int)
[Var ”argc” 0 Int; Var "argv” 0 (Array (Ptr Char) (CCid "UNK”));
Var "envp” 0 (Array (Ptr Char) (CCid "UNK?”))]
[Var "bs1” 0 (Array Char (CCid "BUFSIZE”));
Var "bs2” 0 (Array Char (CCid "BUFSIZE”));
Var "bs8” 0 (Array Char (CCid "BUFSIZE”));
Var "line” 0 (Array Char (CCid "BUFSIZE”));

100

Var "DOCHROOT?” 0 Int; Var "buf” 0 (Struct "stat”);

Var "name” 0 (Array Char (CCid "BUFSIZE”));

Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));

Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));

Var "timestamp” 0 (Array Char (CCint 64));

Var "CHECKUSER” 0 Int; Var "WWWlog” 0 (Ptr Char);

Var "TZ” 0 (Struct ”TZstruct”); Var "errno” 0 Int;

Var ”SYS_euid” 0 Int; Var ”SYS_ruid” 0 Int;

Var ”SYS_suid” 0 Int; Var ”SYS_stdout” 0 Int;

Var ”SYS_FileSystem” 0 (Struct array of files);

Var "SYS_cwd” 0 (Ptr Char); Var ”SYS_root” 0 (Ptr Char)]
(SOMEBody ...))

(F)

Assuming argc_Arraysizeargv (Assumption 1) that is, that argc is the size of the

array argv.

Proof:

We prove the top level with the theorems WF _fnp_cf error and WF fnp_-
cf fetch, and the axioms SYS _chdir, SYS_chroot, SYS_read, SYS setuid, SYS_-
sscanf, SYS strcat, SYS strcpy, SYS_strlen, SYS strncpy, and SYS_strncasecmp.

1. if (0 '= chdir (WWWDIR)) error('"cannot cd");

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
(SYS_root ~“SYS_root) /\ (SYS_euid = ~“SYS_euid) /\
(SYS_ruid ~SYS_ruid) /\ (SYS_suid = ~SYS_suid) /\
(SYS_cwd = WWWDIR)

The first clause follows from the precondition. The next four, root, suid,
euid, and ruid, are the initial values of globals. The last clause is established
by the chdir(). We use the following intermediate condition after chdir ()
is called, but before the test is done, and the axiom SYS_chdir.

101

SoFS hasConfidentialityFile SYS_FileSystem /\
(SYS_root = ~“SYS_root) /\ (SYS_euid = ~“SYS_euid) /\
(SYS_ruid = ~SYS_ruid) /\ (SYS_suid = "“SYS_suid) /\
((C_Result = 0) /\ (SYS_cwd=WWWDIR) \/

(C_Result = int_neg 1) /\ (SYS_cwd="SYS_cwd))

We prove the exit condition of the conditional with the lemma0 # int neg 1.
We prove the body with the theorem WF fnp_cf error and the axiom that

the constant string is nonconfidential.

. if (DOCHROOT == 1)
if (chroot(".") 1= 0)

error("Cannot change root directory to .");

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
(SYS_ruid ~SYS_ruid) /\ (SYS_suid = ~SYS_suid) /\
(SYS_euid “SYS_euid) /\ (SYS_cwd = WWWDIR) /\
((DOCHROQT = 1) ==> (SYS_root = WWWDIR))

The first five clauses follow from the precondition. The final clause is estab-
lished by this statement. The first conditional is easily disposed of. To prove
the second conditional, we separate the call to chroot () with the following

intermediate condition and the axiom SYS_chroot.

SoFS hasConfidentialityFile SYS_FileSystem /\
(SYS_cwd = WWWDIR) /\ (SYS_euid = ~SYS_euid) /\
(SYS_ruid = ~SYS_ruid) /\ (SYS_suid = "“SYS_suid) /\
((C_Result = 0) /\ (SYS_root=WWWDIR) \/

(C_Result = int_neg 1))

We satisfy the exit condition SYS_root=WWWDIR with the definition of resolv-
ing a path, Sect. 6.3.1, page 73. In particular, it says the "." is the current
working directory, SYS_cwd. The exit condition is proved with the lemma

int neg 1 # 0. The call to error() in the body is proved as usual.

102

Note:

The

After this point in the proof, we use the more abstract property that the file
system is confined. We simplify the condition to the following by strength-
ening the precondition. This is justified by the definition of fsconfined.

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root

if (0 '= setuld(WWWUID)) error("setUID failed");

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\ (SYS_euid = WWWUID)

The first two clauses follow from the precondition. The third clause follows
from the success of setuid(). The intermediate condition after the call is
the following. We prove it with SYS_setuid and the lemma int neg 1 # 0.
We prove the body as usual.

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\
((0 = C_Result) ==> (SYS_euid = WWWUID))

next nine code statements deal with getting the remote user’s name, the
file name, etc. Other than potential memory overwrites, these have little to
do with confidentiality, so the condition is unchanged. We group them and

include a few notes about applicable theorems and axioms.

if (arge>1) strncpy(remotehost,argv[1],MAXSIZE);
else strcpy(remotehost, "nowhere") ;
if (arge>2) strncpy(remoteuser,argv[2],MAXSIZE);

else strcpy(remoteuser, "nobody") ;

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\ (SYS_euid = WWWUID)

103

We divide the conditionals into two parts and prove them with SYS strncpy,
SYS strcpy, and the precondition.

. remotehost[MAXSIZE]=’\0’;
remoteuser [MAXSIZE]=’\07;
read(0,line,MAXSIZE);
line[MAXSIZE]="\0";

sscanf(line, "%s %s %s", bsl, name, bs2);

The same postcondition is used throughout:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\ (SYS_euid = WWWUID)

We separate each statement with the sequence rule, and prove them with the

preconditions and the assignment rule, SYS read, or SYS sscanf.

. if ((namel[0] '= ’\0’) && (namel[strlen(name)-1] == ’\r’))
name[strlen(name)-1]=\0";

if ((name[0]=="/7) && ((name[1]==’\0?) || (namel[1]l==’ ?)))
strcpy (name,WWWDefaultFile);

Same postcondition for both:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\ (SYS_euid = WWWUID)

We use the postcondition as the intermediate condition, too, and prove these
conditionals from the precondition and SYS strlen, SYS strcpy, and assign-

ment.

. if (DOCHROOT!=1) {
strcpy(bs3,WWWDIR) ;strcat(bs3,name) ;strcpy(name,bs3);

}

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\ (SYS_euid = WWWUID)

104

This statement prepends the WWW directory to the file name requested if we
did not change the root. We prove the postcondition from the precondition,

SYS strcpy, and SYS strcat.

. if (strncasecmp(bsl,"get",5) == 0) fetch();

Postcondition:

SoFS hasConfidentialityFile SYS_FileSystem /\
fsconfined SYS_cwd SYS_root /\ (SYS_euid = WWWUID)

The postcondition is unchanged and is used for the intermediate condition
after strncasecmp(). If the user requests a “get,” this calls fetch() to
check that the file is public and return a copy to the user. The precondition
is (finally) necessary here for fetch() to maintain confidentiality. We prove

the postcondition with SYS strncasecmp and WF _fnp_cf fetch.

. error("Unknown request");

The postcondition is the function postcondition. We prove it using

WPF _fnp_cf error and the confidentiality of a constant string.

By examination we are satisfied that confidentiality was maintained through

the end of the program.

7.3.8 thttpd has Confidentiality

Theorem 8 (thttpd Confidential)
hasConfidentiality

(Simple
(Call (Var "main” 0 Int)
(PL (Lval (Vref (Var "arge” 0 Int)))
(PL (Lval (Vref (Var "argv” 0 (Array (Ptr Char) (CCid "UNK?”)))))
(PL (Lval (Vref (Var "envp” 0 (Array (Ptr Char) (CCid UNK”)))))

PLnull)))))

SYS_FileSystem

105

Assuming argc_Arraysizeargv (Assumption 1) that is, that argc is the size of the
array argv. Informally, a call to main() will not violate the confidentiality of the

file system.

Proof:

This follows from the definition of hasConfidentiality (Sect. 6.1.2,
page 41) and Theorem 7, main() Confidential.

7.4 Proving Information Integrity
7.4.1 logfile()

We mention a lemma which is a variant of Ya A (e V b) = b. It was hard to

prove in context, so we proved it separately.
Lemma 9 preFSS inode (getFile fileSys inode)

Assuming ~ (inode = inodeOf (deref "F)) and linode. (inode = inodeOf (deref "F))
V preFSS inode (getFile fileSys inode)

Theorem 10 (WF _fnp_ii_logfile)
WF_fnp
(SoFS preFSS SYS_FileSystem)
(Func (Var "logfile” 0 Void)
[Var "F” 0 (Ptr (Struct "FILE”))]
[Var "errno” 0 Int;
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”);
Var ”SYS_FileSystem” 0 (Struct array of files)]
(SOMEBody ...))
(let finode = inodeOf (deref "F) in
(linode. (inode = finode) ==>
preFSS inode (getFile SYS_FileSystem inode)))

106

Informally this says, if the file system is in some state (preFSS), then when
logfile() finishes, everything will be the same except perhaps for the file pointer
passed in (F).

Proof:

We prove the top level with the axioms SYS fprintf, SYS localtime, SYS_
strftime, SYS _time.

1. t=time (NULL)

Postcondition:

(F = "F) /\ (SoFS preFSS SYS_FileSystem) /\

(?some_time.t = some_time)

The first two clauses follow from the precondition. The last follows from

SYS_time with the following intermediate condition and assignment.

(F = "F) /\ (SoFS preFSS SYS_FileSystem) /\

(?some_time.C_Result = some_time)

2. strftime(timestamp, 20, "%Y/%m/%d %T", localtime(&t));

Postcondition:
(F = °F) /\ (SoFS preFSS SYS_FileSystem)

First, we separate the effect of the call to localtime() with the following

intermediate condition.

(F = "F) /\ (SoFS preFSS SYS_FileSystem) /\
(?tsptr.C_Result = tsptr)

The first two clauses follow from the precondition. The last follows from

SYS localtime. The postcondition follows from the intermediate and

SYS _strftime.

3. fprintf(F,"%s %s %s ",remotehost,remoteuser,timestamp);

The postcondition is the function postcondition. We prove this with

Lemma 9 and SYS fprintf.

107

7.4.2 L0OG2

As in logfile(), we found a condition hard to prove in the middle, so we

proved the following lemma.

Lemma 11 /a b.aV b="a= b

Theorem 12 (WF _fnp_ii LOG2)
WF_fnp
(SoFS preFSS SYS_FileSystem)
(Func (Var "LOG2” 0 Void)
[Var "z” 0 (Ptr Char); Var ”y” 0 (Ptr Char)]
[Var ”SYS_FileSystem” 0 (Struct array of files);
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”); Var "errno” 0 Int;
Var "SYS_cwd” 0 (Ptr Char); Var ”SYS_root” 0 (Ptr Char);
Var "WWWlog” 0 (Ptr Char)]
(SOMEBody ...))
(let finode = inodeNamed WWWlog in
(inode. (inode = finode) =
preFSS inode (getFile SYS_FileSystem inode)))

Informally, when LOG2 finishes, nothing is changed, except possibly the
WWW log file.

Proof:

We use the theorem WF _fnp_ii logfile and the axioms SYS fopen, SYS_
fprintf, and SYS fclose.

1. F = fopen(WWWlog,"a+");

Postcondition:

108

SoFS preFSS SYS_FileSystem /\
((F = NULL) \/
(?FOPEN_handlefn.F = FOPEN_handlefn (inodeNamed WWWlog) '"a+"))

The intermediate condition is the postcondition, except having C Result

instead of F. We prove it with SYS_fopen.

. if (F !'= NULL) {logfile(F);fprintf(F,x,y);}

Postcondition:

let finode = inodeNamed WWWlog in
(linode.” (inode = finode) ==

preFSS inode (getFile SYS_FileSystem inode))

We break the conditional into two parts, and prove the exit condition with
the definition of SoFS. Next we begin to prove the body by strengthening
the precondition to state that the file system is unchanged and F is a handle
of the WWW log file.

(SoFS preFSS SYS_FileSystem) /\
(?FOPEN_handlefn.F =
FOPEN_handlefn(inodeNamed WWWlog) '"a+")

We prove the two function calls in the body like this.

(a) logfile(F);

Postcondition:

(?FOPEN_handlefn.F =
FOPEN_handlefn(inodeNamed WWWlog) "a+") /\

(let finode = inodeNamed WWWlog in
(linode. " (inode = finode) ==

preFSS inode(getFile SYS_FileSystem inode)))

After logfile() the log file may have changed, but everything else is
unchanged. We prove this with WF _fnp_ii logfile, the definition of SoF'S,

109

and the axiom that the handle returned by fopen() refers to that file
(Sect. 6.3.1, page 72).

(b) fprintf(F,x,y);
The postcondition is the statement postcondition. We prove this with

the definition of SoF'S, SYS fprintf, Lemma 11, and the fopen() handle

axiom again.

3. fclose(F);

The postcondition is the function postcondition. We prove it with SYS fclose.

7.4.3 L0G4

Theorem 13 (WF _fnp_ii LOGA4)
WF_fnp
(SoFS preFSS SYS_FileSystem)
(Func (Var "LOG4” 0 Void)
[Var ”z” 0 (Ptr Char); Var "y” 0 (Ptr Char);
Var ”z” 0 (Ptr Char); Var "w” 0 (Ptr Char)]
[Var ”SYS_FileSystem” 0 (Struct array of files);
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”); Var "errno” 0 Int;
Var "SYS_cwd” 0 (Ptr Char); Var ”SYS_root” 0 (Ptr Char);
Var "WWWlog” 0 (Ptr Char)]
(SOMEBody ...))
(let finode = inodeNamed WWWlog in
(linode. (inode = finode) ==>
preFSS inode (getFile SYS_FileSystem inode)))

Informally, when L0OG4 finishes, nothing is changed, except possibly the
WWW log file.

110

Proof:

The proof of LOG4 is essentially identical to that of LOG2.

7.4.4 error()

Once again we prove a simple lemma because it was difficult to do within

the main proof.

Lemma 14 labc~a= "b=>c="(bVa)=c

Theorem 15 (WF _fnp_ii_error)
WF_fnp
(SoFS preFSS SYS_FileSystem)
(Func (Var "error” 0 Int)
[Var ”s” 0 (Ptr Char)]
[Var ”SYS_FileSystem” 0 (Struct array of files);
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "TZ” 0 (Struct ”TZstruct”);
Var "errno” 0 Int; Var "WWWlog” 0 (Ptr Char);
Var ”"SYS_root” 0 (Ptr Char); Var ”SYS_cwd” 0 (Ptr Char);
Var "bs1” 0 (Array Char (CCid "BUFSIZE”));
Var "name” 0 (Array Char(CCid ?BUFSIZE”))]
(SOMEBody ...))

(F)

Strictly speaking we prove that nothing is executed after error() finishes.
However we inspect the proof to see that information integrity is preserved in the
penultimate condition.

Proof:

We prove top level correctness with WF _fnp i1 LOG4, SYS exit, and SYS_
printf.

111

1. printf("HTTP/1.0 302 Found\n");
printf("Server: ManAl/0.1\n");
printf ("MIME-version: 1.0\n");
printf (REDIRECT) ;
printf("Content-type: text/html\n");
printf ("<HEAD><TITLE>Document moved</TITLE></HEAD>\n");
printf (""<BODY><H1>Document moved</H1>\n");
printf (ERRORLINE) ;

We use the same postcondition for every statement which is that stdout may
have changed since printf() changes stdout, and it is modeled as a part of

the file system.
SoFS (\i u.”(i=SYS_stdout)==>preFSS i u) SYS_FileSystem

For regularity, we first strengthen the precondition, then do the same proof
for each call. We prove each call with SYS_printf and somewhat involved

rewrites.
2. LOGA("Error:Y%s - %s %s\n",s,bsl,name);

The postcondition is that stdout or the log file may have changed.

SoFS (\i u. "((i=SYS_stdout) \/ (i=inodeNamed WWWlog))==
preFSS i u) SYS_FileSystem

We prove this with WF fnp_ i1 LOG4, SoF'S, and Lemma 14.

3. exit(1);

By examination, information integrity has been maintained up to this call.

We prove this with SYS _exit.

7.4.5 cat()

Here again we need a simple lemma within the proof.

Lemma 16 aV (Ya = b)="a =15

112

Theorem 17 (WF _fnp_ii_cat)
WF_fnp
(SoFS preFSS SYS_FileSystem)
(Func (Var ”cat” 0 Void)
[Var ”s” 0 (Array Char (CCid "UNK”))]
[Var ”SYS_FileSystem” 0 (Struct array of files);
Var ”SYS_root” 0 (Ptr Char); Var ”SYS_cwd” 0 (Ptr Char);
Var ”SYS_stdout” 0 Int; Var "errno” 0 Int;
Var "bs2” 0 (Array Char (CCid "BUFSIZE”))]
(SOMEBody ...))
(inode. (inode = SYS_stdout) =
preFSS inode (getFile SYS_FileSystem inode))

Informally, cat () does not change any file, except perhaps stdout.

Proof:

The top level goal is reduced using SYS open, SYS _read, SYS_write, and
SYS close.

1. i=open(s,0);

Postcondition;
SoFS preFSS SYS_FileSystem

This follows from the precondition and SYS_open.

2. while ((n=read(i,bs2,MAXSIZE)) > 0) write(l,bs2,n);

The postcondition is that all files are the same, except possibly stdout.

linode.” (inode = SYS_stdout) ==>
preFSS inode (getFile SYS_FileSystem inode)

We prove this in three main steps: we set up the loop invariant, prove the
read () establishes the test intermediate condition, and prove that the body

(the write()), reestablishes the invariant.

113

(a) We set up the following weaker loop invariant.

linode.” (inode = SYS_stdout) ==
preFSS inode (getFile SYS_FileSystem inode)

This is valid by precondition strengthening and the definition of SoFS.

(b) We prove that the loop postcondition follows by reducing the loop with
the while inference rule. We use the invariant as the condition after
the test. The termination condition follows directly from the invariant.

We prove the test, which calls read(), produces the condition with
SYS read.

(c) write(1,bs2,n);
We prove that the write() in the body reestablishes the invariant using

the definition of SoFS, SYS write, the axiom that file descriptor 1 is
stdout (Sect. 6.3.1, page 73), and Lemma 16.

3. close(i);

We prove that the postcondition, which is the function postcondition, follows

with SYS _close.

7.4.6 fetch()

Theorem 18 (WF _fnp_ii_fetch)
WF_fnp
(SoFS preFSS SYS_FileSystem)
(Func (Var ”fetch” 0 Void)
[]
[Var "bs1” 0 (Array Char (CCid "BUFSIZE”));
Var "bs2” 0 (Array Char (CCid "BUFSIZE”));
Var "name” 0 (Array Char (CCid "BUFSIZE”));
Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));
Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));
Var "timestamp” 0 (Array Char (CCint 64));
Var "CHECKUSER” 0 Int; Var "WWWlog” 0 (Ptr Char);

114

Var "TZ” 0 (Struct ”TZstruct”); Var "errno” 0 Int;

Var "buf” 0 (Struct "stat”); Var ”"SYS_stdout” 0 Int;

Var ”SYS_FileSystem” 0 (Struct array of files);

Var ”"SYS_cwd” 0 (Ptr Char); Var ”SYS_root” 0 (Ptr Char)]
(SOMEBody ...))

(F)

Again strict conformance to our model only allows us to prove a postcon-

dition of false, since fetch() exits.

Proof:

We prove the top level call is well-formed with WF fnp_ii cat, WF fnp_-
ii_error, WF _fnp i1 LOG2, SYS _geteuid, SYS exit, SYS stat, and SYS_S_ISREG.
We simplify the function body precondition to the following.

SoFS preFSS SYS_FileSystem

1. staterr=stat(name,&(buf));

The postcondition states that the file system is unchanged and either there
was an error (staterr = -1) or buf has the status of file “name” given the

current working directory and root.

SoFS preFSS SYS_FileSystem /\
0) /\ (buf = statSpec name SYS_cwd SYS_root) \/

((staterr

(staterr = int_neg 1))

The first clause follows from the precondition. The next clause follows from
SYS stat and the axiom that the dereference of an address-of yields the
original, buf in this case.

2. if (staterr !'= 0) error("Can’t stat file");

The postcondition is that the file system is unchanged and buf has the status

of file “name.”

115

SoFS preFSS SYS_FileSystem /\
(buf = statSpec name SYS_cwd SYS_root)

We prove the false condition with the lemma that int neg 1 is not 0. We
prove the body with WF _fnp_ii_error.

. if (0 == S_ISREG(buf.st_mode))

error("Can’t fetch directories");

The postcondition remains the same since fetching directories has no effect
on information integrity. We prove the statement with the same condition
for the intermediate condition after the test, SYS_S_ISREG for the test, and
WF _fnp_ii_error.

. if (CHECKUSER==1)
if (buf.st_uid !'= geteuid())

error ("Not owner of file");

Since we are concerned with information integrity, not confidentiality, the

postcondition is still the same.

SoFS preFSS SYS_FileSystem /\
(buf = statSpec name SYS_cwd SYS_root)

This follows from the precondition, SYS_geteuid, and WF _fnp_ii_error.

. if (0 '= (S_IROTH & buf.st_mode)) {
cat(name); LOG2("cat %s\n",name); exit(1l);
}

Since the state of buf was only needed until this statement, the postcondi-
tion is the simpler “file system is unchanged.” Although cat () may change
stdout, and LOG2 may change the log file, execution is stopped by exit (),

so the postcondition is not unreasonable.
SoFS preFSS SYS_FileSystem

We begin by breaking up the conditional, and proving the body.

116

(a) cat(name);

The postcondition is that nothing in the file system changes, except
possibly stdout.

SoFS (\i u.”(i=SYS_stdout)==>preFSS i u) SYS_FileSystem

This follows from WF fnp_ii_cat and the definition of SoFS.

(b) LOG2("cat %s\n",name);
The postcondition is that everything but possibly stdout and WWWlog

is unchanged.

SoFS (\i u.~((i=SYS_stdout) \/ (i=inodeNamed WWWlog))
==>preFSS i u) SYS_FileSystem

We prove this from the precondition, WF fnp_ii LOG2, the definition
of SoFS, and Lemma 14.

(c) exit(1);

We prove that the postcondition follows from SYS_exit.

6. error("Access Denied");
The function postcondition follows from WF fnp_ii_error.

We see by inspection that information integrity was maintained through the

end of the function.

7.4.7 main()

Theorem 19 (main() Integrity)
WF_fnp
(SoFS preFSS SYS_FileSystem) (Func (Var "main” 0 Int)
[Var ”arge” 0 Int; Var "argv” 0 (Array (Ptr Char) (CCid "UNK”));
Var "envp” 0 (Array (Ptr Char) (CCid "UNK?”))]
[Var "bs1” 0 (Array Char (CCid "BUFSIZE”));
Var "bs2” 0 (Array Char (CCid "BUFSIZE”));
Var "bs8” 0 (Array Char (CCid "BUFSIZE”));
Var "line” 0 (Array Char (CCid "BUFSIZE”));

117

Var "DOCHROOT?” 0 Int; Var "buf” 0 (Struct "stat”);

Var "name” 0 (Array Char (CCid "BUFSIZE”));

Var "remotehost” 0 (Array Char (CCid "BUFSIZE”));

Var "remoteuser” 0 (Array Char (CCid "BUFSIZE”));

Var "timestamp” 0 (Array Char (CCint 64));

Var "CHECKUSER” 0 Int; Var "WWWlog” 0 (Ptr Char);

Var "TZ” 0 (Struct ”TZstruct”); Var "errno” 0 Int;

Var ”SYS_euid” 0 Int; Var ”SYS_ruid” 0 Int;

Var ”SYS_suid” 0 Int; Var ”SYS_stdout” 0 Int;

Var ”SYS_FileSystem” 0 (Struct array of files);

Var "SYS_cwd” 0 (Ptr Char); Var ”SYS_root” 0 (Ptr Char)]
(SOMEBody ...))

(F)
Assuming argc_Arraysizeargv (Assumption 1), that is, that argc is the size of the

array argv.

Proof:

We prove the well-formedness of the top level goal using WF _fnp_ii_error,
WPF _fnp_ii fetch, SYS _chdir, SYS chroot, SYS read, SYS setuid, SYS_sscanf, SYS_
strcat, SYS strcpy, SYS_strlen, SYS strncpy, and SYS _strncasecmp. We begin the
proof of the body with the file system in some state and initial values for several

important global variables.

SoFS preFSS SYS_FileSystem /\
(SYS_root = ~“SYS_root) /\ (SYS_euid
(SYS_ruid = ~SYS_ruid) /\ (SYS_suid

~SYS_euid) /\
~SYS_suid)

1. if (0 '= chdir (WWWDIR)) error('cannot cd");

The postcondition adds that the current working directory is the WWW

directory.

SoFS preFSS SYS_FileSystem /\ (SYS_cwd = WWWDIR) /\
(SYS_root ~“SYS_root) /\ (SYS_euid = ~“SYS_euid) /\
(SYS_ruid ~SYS_ruid) /\ (SYS_suid = ~SYS_suid)

118

The intermediate condition after calling chdir() is the precondition with
either the current working directory successfully changed to the WWW di-

rectory or the current working directory unchanged.

SoFS preFSS SYS_FileSystem /\

(SYS_root = ~“SYS_root) /\ (SYS_euid = ~“SYS_euid) /\
(SYS_ruid = ~“SYS_ruid) /\ (SYS_suid = "“SYS_suid) /\
((C_Result = 0) /\ (SYS_cwd=WWWDIR) \/

(C_Result = int_neg 1) /\ (SYS_cwd = "SYS_cwd))

We prove these with SYS_chdir, the lemma that int neg 1 is not 0, and
WF _fnp_ii_error.

. if (DOCHROOT == 1)
if (chroot(".") 1= 0)

error("Cannot change root directory to .");

The postcondition adds that the root directory is the WWW directory (if
that option is configured).

SoFS preFSS SYS_FileSystem /\ (SYS_cwd = WWWDIR) /\
(SYS_euid ~“SYS_euid) /\ (SYS_ruid = ~SYS_ruid) /\
(SYS_suid ~SYS_suid) /\

((DOCHROOT = 1) ==> (SYS_root = WWWDIR))

The first five clauses follow from the precondition. If DOCHROOT is not 1, the
last condition follows. Otherwise it follows from SYS _chroot, the definition
that “” means the current working directory (which is WWWDIR from the

second clause) in path resolution, the lemma that 0 is not int_neg 1, and

WF _fnp_ii_error.

. if (0 '= setuid(WWWUID)) error("setUID failed");

The postcondition here, and in fact, through the end of the program is that
the file system is unchanged and the current working directory and the root

directory are WWWDIR.

119

The

SoFS preFSS SYS_FileSystem /\ SYS_cwd = WWWDIR) /\
((DOCHROQT = 1) ==> (SYS_root = WWWDIR))

We use SYS setuid and WF _fnp_ii_error to prove that the postcondition fol-

lows.

next nine code statements deal with getting the remote user’s name, the file
name, etc. Other than potential memory overwrites, these have little to do
with information integrity, so the condition is unchanged. We group them

and include a few notes and theorems and axioms we used.

. if (argc>1) strncpy(remotehost,argv[1],MAXSIZE);

else strcpy(remotehost, "nowhere") ;
if (arge>2) strncpy(remoteuser,argv[2] ,MAXSIZE);

else strcpy(remoteuser, "nobody") ;

The postcondition is unchanged. For both statements we divide the condi-
tionals into two parts and prove them with SYS strncpy, SYS_strcpy, and

the precondition.

. remotehost[MAXSIZE]=’\0’;

remoteuser[MAXSIZE]=’\0";
read(0,line,MAXSIZE);
line[MAXSIZE]=’\0’;

sscanf(line, "%s %s %s", bsl, name, bs2);

The same postcondition is used throughout.

SoFS preFSS SYS_FileSystem /\ SYS_cwd = WWWDIR) /\
((DOCHROQT = 1) ==> (SYS_root = WWWDIR))

We separate each statement with the sequence rule, and prove them with the

preconditions and the assignment rule, SYS read, or SYS sscanf.

if ((name[0] != °\0’) && (namel[strlen(name)-1] == ’\r’))
name[strlen(name)-1]=\0";

if ((name[0]==’/?) && ((name[1]==’\0’) || (name[1]==’ 7)))

120

strcpy(name,WWWDefaultFile);
We maintain the same postcondition throughout.

SoFS preFSS SYS_FileSystem /\ SYS_cwd = WWWDIR) /\
((DOCHROQT = 1) ==> (SYS_root = WWWDIR))

We use the postcondition as the intermediate condition, too, and prove these
conditionals from the precondition and SYS strlen, SYS strcpy, and assign-

ment.

7. if (DOCHROOT!=1) {
strcpy(bs3,WWWDIR) ;strcat(bs3,name) ;strcpy(name,bs3);
}

Postcondition:

SoFS preFSS SYS_FileSystem /\ SYS_cwd = WWWDIR) /\
((DOCHROQT = 1) ==> (SYS_root = WWWDIR))

This statement prepends the WWW directory to the file name requested if we
did not change the root. We prove the postcondition from the precondition,
SYS strcpy, and SYS strcat.

8. if (strncasecmp(bsl,"get",5) == 0) fetch();
Postcondition:

SoFS preFSS SYS_FileSystem /\ SYS_cwd = WWWDIR) /\
((DOCHROQT = 1) ==> (SYS_root = WWWDIR))

The postcondition is unchanged and is used for the intermediate condition
after strncasecmp(). If the user requests a “get,” this calls fetch() to check
that the file is public and return a copy to the user. Since fetch() exits, we
can prove the postcondition with SYS strncasecmp and WF _fnp_ii_fetch.

9. error("Unknown request");

We use the program postcondition. We prove it with WF fnp_ii_error.

By examination we are satisfied that thttpd maintains information in-

tegrity throughout the end of the program.

121

7.4.8 thttpd has Information Integrity

Theorem 20 (thttpd Integrity)
hasInfolntegrity
(Simple
(Call (Var "main” 0 Int)
(PL (Lval (Vref (Var "arge” 0 Int)))
(PL (Lval (Vref (Var "argv” 0 (Array (Ptr Char) (CCid "UNK?”)))))
(PL (Lval (Vref (Var "envp” 0 (Array (Ptr Char) (CCid UNK”)))))

PLnull)))))
preF'SS SYS_FileSystem log

Assuming argc_Arraysizeargv (Assumption 1), that is, that argc is the size of the
array argv. Informally, this means nothing in the file system is changed except

perhaps the log file and stdout.

Proof:

This follows from the definition of hasInfoIntegrity (Sect. 6.1.1, page 41)
and Theorem 19, main() Integrity.

7.5 Proving thttpd Secure

We come to the main thrust of the dissertation: proof that thttpd is secure.

Theorem 21 (thttpd Secure)
1sSecure
(Simple
(Call (Var "main” 0 Int)
(PL (Lval (Vref (Var "arge” 0 Int)))
(PL (Lval (Vref (Var "argv” 0 (Array (Ptr Char) (CCid "UNK?”)))))
(PL (Lval (Vref (Var "envp” 0 (Array (Ptr Char) (CCid UNK”)))))

PLnull)))))
preF'SS SYS_FileSystem log

Assuming argc_Arraysizeargv (Assumption 1), that is, that argc is the size of the

array argv. Informally, this means that executing thttpd will not violate security

122

with respect to some initial condition (preFSS) of the file system, including some

log file.

Proof:

This follows from the definition of isSecure (Sect. 6.1, page 40), Theorem 8,
thttpd Confidential, and Theorem 20, thttpd Integrity.

QED.

123

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Section 8.1 gives the results from our verification, that is, what we uncov-
ered, while Sect. 8.2 notes limitations, primarily in the formalizations. Section 8.3
lists some areas of possible future work, including our proposal for a practical

software verification system, and we finish with our conclusions in Sect. 8.4.

8.1 Verification Results

As expected, we found no serious bugs in thttpd. The formal verification
did yield some interesting results. In this section we report the areas of concern

and give our analyses of each one. None of these were noted in the detailed code

walkthrough [11].

8.1.1 Assumption

The only explicit assumption we needed to make is Assumption 1, page 79,
that argc passed to main() is, indeed, the number of arguments or the size of

argv.

Analysis

We could have included this as part of the formal description, but instead
wanted to expose it as an assumption. Since it is guaranteed as part of Unix

program invocation, it should not invalidate any conclusions.

8.1.2 Formal Specifications

The original report on thttpd [11] gave the properties of interest as infor-
mation integrity, “that the information residing in the server is not corrupted,”
availability of service, and confidentiality, “that the service only provides infor-
mation ...that is explicitly authorized for outside access.” We formalized these

definitions.

124

Making formal specifications brought out some interesting details explicitly.

1. Causing information to be written to the log file or stdout is allowed, oth-

erwise information on the server is corrupted.

2. Error messages and other fixed strings in the program are implicitly autho-

rized for outside access, otherwise confidentiality is violated.

We also noticed while doing the proof that the log file must be in the server
“space” (so it can be opened after the chroot()), but must not have permissions
for users to request it. Otherwise, remote users could find out what other users
are requesting, and information could be passed from one user to another. Passing
could be done as follows: the first user requests files where the file names are the
information to be passed. The information given as file names is logged. The
other user gets the log file and reads the requests of the first user. This important
configuration detail is included in the installation instructions, but not in the

original report.

Analysis

None of these compromise security. Rather the formalizations help us un-

derstand more exactly what we mean by “security.”

8.1.3 Ill-formed Code Constructs

The following shouldn’t cause problems in practise, but are formally ill-

formed. Every installation should check that these won’t cause problems.

Calling fclose() with NULL

The macros L0G2, LOG3, and L0OG4 call fclose whether or not the file open
succeeds. If the open fails, fclose(NULL) is executed. The manual page doesn’t
clearly say what fclose() does in that situation, but suggests that it checks for a
valid stream. Interestingly, in a test of calling fclose(NULL) on HP-UX Release
9.0: August 1992, fclose() returned -1 (or, EOF) indicating an error, but did not

set the global errno.

125

time () may fail in logfile()

The manual page says on failure time() returns (time t) -1, but doesn’t
detail when failures may occur. The only error listed is if the parameter passed
“points to an illegal address.” Since NULL is hardcoded, this shouldn’t cause a
problem. However the call localtime(& (time_t) -1) could conceivably cause a

core dump.

Calling exit with no parameter

The functions error() and fetch() call exit () with no parameter. How-
ever exit () is defined as taking one parameter: a status. In the best case, some
compiler-dependent status is returned when the program exits. In the worst case,
which is highly unlikely given the typical way of implementing function calls in C,

the incorrect invocation could cause arbitrary functionality.

Unused Declarations

Lastly we found unused bits of code. Although it should not cause a prob-
lem, the macro LOG3() is defined, but never used. Also the function logfile()

declares, but does not use, the variable tloc.

Analysis

It is remotely possible that these could cause core dumps. Flanagan points
out [19] that a core dump may lead to a breach of confidentiality if someone requests

the file /core and a previous core file has the following properties.

e The core file is in the web area. This is likely since core dumps are usually

in the current directory, and thttpd changes to the root of the web area.

e The core file is owned by “web.” This is likely since core file are usually

owned by the executing process, and thttpd sets the UID to “web.”

e The core file is “other” readable. This is unlikely since core file are usually

readable only be the owner.

126

Thus it does not seem likely that these problems could compromise security.

However, for greater assurance, the following steps could be taken.

1. thttpd prevents core files by setting the maximum core file to 0, say, with
setrlimit ().

2. Every installation checks that core files are readable only by the owner.

8.1.4 No Check that open() Succeeds

The function which actually returns the contents of the requested file is
cat (). It is only called from one other routine, fetch(), which checks conditions
before calling cat (), which opens the file, but doesn’t check for success. However
fetch() misses an unusual condition which may cause the open() to fail. The

implementation of the functions is given here for reference.

void cat (char s[])

{int i,n;FILE *F;

i=open(s,0);

while ((n=read(i,bs2,MAXSIZE)) > 0) write(1,bs2,n);
close(i);}

/* if www owns it, it can be put - else, forget it */
void fetch()
{int staterr;
staterr=stat (name,&(buf));
/* can’t stat the file - die */
if (staterr '= 0) error("Can’t stat file");
if (0 == S_ISREG(buf.st_mode)) error("Can’t fetch directories");
if (CHECKUSER==1) if (buf.st_uid != geteuid())
error("Not owner of file"); /* don’t own it - die */
if (0 '= (S_IROTH & buf.st_mode)) {
cat(name); LOG2("cat %s\n",name);exit(1);
} /* Send itx*/

error("Access Denied");}

127

The calling routine, fetch(), checks that the file
1. exists (is accessible),
2. is a regular file (not a directory, pipe, etc.),
3. is owned by the special user “www,” and
4. is readable by “other” users (the least privileged).

In the Unix permission system, processes must have permissions for the class to
which they belong. If thttpd runs as user “www” and the file is owned by “www,”
the file must be readable by “owner.” In this case, permissions for “other” users
have no effect.

Therefore if a file is set up according to directions except that it is not
“owner” readable, cat () fails to deliver the file (read () returns -1 and the while
loop exits), but the log file indicates a successful delivery.

We found the problem while verifying confidentiality. We had to show that
if open() failed (and returns -1 as the file descriptor), the contents of bs2 were
nonconfidential. However the axiom for read() originally stated that the buffer
might be modified regardless of an error file descriptor. We strengthened the
postcondition to say that if something was read, the file descriptor could not have

been -1.

Analysis

This error has no effect on security, but the log file may be incorrect.

8.1.5 No Repeated Call to write()

The system documentation [29] seems to say that the call to write() within

cat () may be interrupted.

If write() is interrupted by a signal after it successfully writes some

data, it will return the number of bytes written.

If this occurs, all the bytes read may not be written, but the log file indicates
a successful delivery. This could be avoided by looping to repeatedly call write()

128

until all bytes are written or using a higher level interface, such as putchar() or
printf().

We found the problem while verifying confidentiality. We had to show that
if write() failed, nothing confidential was written. However the axiom for write()
originally guaranteed nothing about the file system in the case of a failure. While
rereading the manual page describing write(), we noticed the above problem. We
strengthened the postcondition to say that if -1 were returned, the file system is

unchanged.

Analysis

This error has no effect on security, but the file delivered to the user may

be missing some information with no indication of a problem in the log file.

8.2 Limitations and Restrictions

This proof is a simultaneous investigation of formal verification of software
using axiomatic semantics, verification and formalization of the C language and
operating system calls, and verification and formalization of a secure web server.
As such in some cases we demonstrate the feasibility of approaches without fol-
lowing them fully. This section lists the limitations and short comings of our
formalizations.

We did not prove total correctness, that is, reachability and termination
in addition to partial correctness. Although informal inspection leads us to be-
lieve that thttpd terminates, total correctness will surely be important in proving
availability.

Our model uses natural numbers. To be more rigorous we could use integers
and prove there are no overflows. The only negative integer used, -1, is a return
values, and we handle it with the underspecified function, int neg. Although our
implementation leads to an inconsistency (see Sect. 6.4.1 for details), we believe
our proof is valid.

We did not formalize all of C. For example, we ignored floating point arith-
metic, the C preprocessor, unrestricted pointers (pointer casts) and pointers-to-

function, storage rules for structures and enumerations (enum), do while and for

129

loops, scoping rules for multiple source files and nested blocks. We did not im-
plement inference rules for recursive or mutually recursive function, but believe
Homeier’s logic would suffice. Likewise we abstract away or ignore many parts of
Unix, such as I/O buffering, directories, and memory allocation.

We ignored the C macro preprocessor almost entirely. The subject, thttpd,
used three macros with parameters, L0G2, L0OG4, and S_ISREG. We treated them as
functions, which is adequate for this code. We treated macros without parameters
as special constants. In general macros must be expanded (running cpp expands
all macros, including system macros) before translating into the abstract syntax
or the preprocessor “language” must be formalized. Since preprocessing occurs
before parsing, the formalization would have to be very low level (line oriented
tokens) and the parsing done in the formal system.

Currently exit () is modeled as - {P} exit(); {F}. This is not unreason-
able since control never passes to subsequent statements, equivalent to nontermi-
nation. However since F' = anything, we must informally inspect the proof to
satisfy ourselves that the final constraints of functions really are established.

Similarly we have not given inference rules for values from return state-
ments. Homeier’s entry logic may provide a way to express them.

Representation of arrays is problematic. Part of the problem arises from the
similarity in C between pointers and arrays. Compounding that is our choice to
represent arrays as compound types carrying the value function and the array size.
Lastly it is tempting to represent arrays of characters as HOL strings. Thus array
variables are variously represented as : ’a list, :’a ptr, CA (CAFN v) (CA_IDX
v), :string, and Struct "(ascii)CArray".

Although we have not explicitly addressed memory overwrites, which may
arise from storing into an array beyond its boundary, we believe our axiomatization
is conservative. The array read and write functions, CA and CA_PUT, are undefined
if the index is outside the array boundary. Therefore there should be no need for
a separate proof addressing memory.

There is no formal mechanism for top level proof. Currently we prove
theorems for each routine separately. The top level goal is that a call to a routine
named main() is secure. In particular the environment in which the function

theorems are proved (in WF_fnp_TAC) is not required to be the same as the functions

130

used in CALL tactics.
isSecure (main (int argc, char *argv[], char *envp[]))

The answer would be to create the environment from the complete code
listing and system axioms, then draw only from that. The top level proof would

look something like the following.

isSecure
[WF_fnp chdir ... ,
WF_fnp chroot ... ,
WF_fnp geteuid ... ,

]

logfile (FILE *F) { ...
L0G2 (char *x,
L0G4 (char *x,
error (char *s) { ...
cat (char s[]) { ...
fetch O { ...

main (int argc,

The set of definitions, theorems, axioms, and tactics we have is, not sur-
prisingly, far from a commercial or even particularly usable product or system.

It
e lacks a good user interface,
e is not packaged (portable, installation script, single tar file, etc.), and
e lacks a tutorial and other examples.

Additionally the tactics aren’t as general purpose as possible.

Although it has been a source of errors in the past, we have not established
our axiomatic semantics and inference rules from a denotational semantics. This
is important to avoid subtle errors in the inference rules and axioms.

The example code is still relatively small compared with, say, an operating

system kernel, so we lack management tools for proofs of large, complex programs.

131

Large programs have rich, complicated behavior, so typically have large conditions,
and we need to prove many properties about them. We manually handled a proof
of two properties over eight functions with one assumption. However we surely
need something more if we have, say many properties and dozens of assumptions
and functions.

We only explored one program and verification method in detail. To be able
to validly draw conclusions about the superiority (or inferiority) of this method,

we must verify several different programs or try several verification methods.

8.3 Future Work

In this section we note possible directions for future work.

8.3.1 Inference Rules

The inference rules for if and while statement in Chapter 5 show how
side effects can be characterized. It is straight forward to extend that to for and
do ...while loops and operators with sequence points, such as || and &&. The
inference rules must also handle break and continue statements in loops, perhaps
along the lines of Homeier’s entry and exit logics.

Most likely the structure of statements in axiomatic semantics must be
extended to admit multiple post conditions after [1| to reason about exit and
return conditions.

We must develop a whole set of inference rules for termination and reacha-
bility, to prove total correctness in the presence of nonlocal jumps.

Also, the inference rules should be proven correct from a lower level logic,

such as operational semantics [38] or abstract state machines [24].

8.3.2 Numbers, Pointers, and Types

Modeling computer integer arithmetic with natural numbers is quite unre-
alistic, and, in our case leads to a contradiction. At a minimum integers should
be the default model with a means of proving there are no overflows. Additionally

some programs need rational or real arithmetic for floating point numbers.

132

The current simple modeling of arrays and pointers must be extended to
follow the C model more closely, and must be able to model dynamically allocated
data structures at a minimum.

C uses type conversion often and subtly. A set of inference rules to represent

and reason about explicit and implicit type conversions will be necessary.

8.3.3 Function Calls

We do not model functions with a variable number of parameters well. If
the output of, say, a printf() statement is important to the proof, the current
methods must be extended.

We axiomatize only a small part of the functionality of operating system
and library calls. Full descriptions will likely be huge. Extracting the information
needed for a particular proof could be very tedious. More research is needed to

either establish that this is not a problem or to come up with a workable approach.

8.3.4 A Complete Verification System

The inference rules, parsers, tactics, etc. we developed to verify thttpd by
no means constitute a broadly useful software verification system. However our
experience has earned us insight into what would be needed. As first proposed in

[8], we believe the following elements are both necessary and sufficient.

1. A library of examples of design formalizations and examples of how to for-
malize common programming patterns. A formal specification is the first
step in verification [5] and can, in itself, be of great benefit [16]. But finding
a formalization and avoiding lapses can be hard. For instance, the specifica-
tion of sorting in an early version of [21] could have been trivially satisfied
by setting all the values to zero: it didn’t specify that values at the end are

a permutation of beginning values.

2. A high level model of the language along with rules of inference, such as
axiomatic semantics. As explained in Sect. 4.6, page 26 the logic must be

proven correct from a low level, definitional semantics to minimize errors.

133

3. Formal models of the environment. This begins, of course, with the program-
ming language, but includes standard libraries, operating system routines,
network services, etc. Larger programs typically use other services rather

than being stand-alone entities.

4. A powerful, highly automated theorem proving environment. This corre-
sponds to PVS [39], very powerful tactics in HOL, verification condition
generators [32, 36], etc. An environment which finds loop invariants and
proves most lower level theorems automatically allows a lower entry training
cost and less user time. Additionally there must be a good user interface,

probably graphical-based.

A system like this could be as widely used as compilers, revision control
systems, or project management tools are today. It is an indictment of the state
of the art that verifying a mundane two page program in a common language is
a doctoral dissertation. Much of the theoretical foundation is in place; it does

however require a huge amount of software development.

8.4 Conclusions

As we proposed in the thesis statement (Sect. 1), we applied computer-
assisted, post-hoc formal verification to useful, production code written in a widely
used language. In spite of very complex semantics of the language, we have devel-
oped additional insights into the code and increased our confidence in its security.

Many aspects of program verification have long since been established and
are well known. However formal verification, particularly by axiomatic semantics,
is not widely practiced. This dissertation adds details and approaches to deal with
real-world problems rather than being limited to simple languages and examples.
We developed and published inference rules for languages with side effects in ex-
pressions, methods of deeply embedding a semantically complex language, tactics
for verifying software, a formalization of some security properties, and security
models of parts of the Unix file system, processes, and system calls.

Since thttpd is a typical C program in many ways, we feel that this single

successful verification strongly supports our belief that verification of real programs

134

in real languages is practical. Dijkstra’s call to sacrifice good software design
practices when needed to ease verification is less urgent since well designed software
can be verified just as easily. Although no panacea or “silver bullet,” formal
verification can and, in our opinion, will play an increasing important role in

producing high quality software.

135

APPENDIX A

A SOFTWARE VERIFICATION MANUAL

This chapter is a manual for software verification using the formalizations
and tactics developed for the dissertation. It mixes a tutorial with a reference
manual for tactics. We assume the reader is generally familiar with axiomatic
semantics and HOL.

Section A.1 explains the preliminaries of translating source code and speci-
fications into a goal to solve in HOL, while Sect. A.2 gives some hints and general
suggestions about how to prove goals, especially those related to software verifi-
cation. Sections A.3, A.4, A.5, and A.6 present inference rules and related tactics
beginning at simple expressions and ending with functions. In the last section,

Sect. A.7, we explain other, new tactics which we have found useful.

A.1 Verifying C Code

A good way to learn to verify is to begin with small fragments of C code.
However for complete programs, one verifies C functions and programs. We begin
by explaining how to verify C code, then show the additional steps to verify C
functions.

The first step is to translate C code into an equivalent abstract syntax tree.
It is probably quicker to hand-translate a short piece of code if one is familiar with
AST forms. For longer pieces of code or if one is beginning, we have a translator
which helps job. Specific instructions on how to load and run the translator are in

file c2holReadme.sml. All the necessary files can be found at the following URL.
http://hissa.ncsl.nist.gov/"black/Disser/

The translator lexically analyzes the code, and does some semantic pars-
ing, such as assigning types to variable references. The translator was written as
a simple aid to create abstract syntax trees, not a finished tool, and there are
many things the translator cannot handle or does wrong. Thus before running the

translator, the user must make the following changes to the source code.

136

5.

. Make sure the code compiles without error. (The translator lacks many error

checks.)

. Remove comments.

Remove #ifdef’s. This implies the user must decide which version to verify.

Replace #define macros which have parameters. If the macro is simple, the
user can replace it with a function. If not, the user must do some prepro-

cessing.

Remove #includes. Add appropriate declarations textually.

Be sure that declarations for global variables and function return values precede

the source code to be translated. In the resultant AST, the user may need to do

the following fix ups.

1.

Correct or “cast” types, especially system types which are equivalent to int.
Correct disambiguators so variable references are correct.

Add to each function the list of global variables which the function, or its

called functions, use.
Correct operator precedence or association errors.

If a variable has type UnknownType, add a declaration and translate again.

When one has an abstract syntax tree representation of the code, one must

express convert side conditions and specifications into preconditions and postcondi-

tions. This is often an interactive process strengthening the precondition, adding

assumptions, or weakening the postcondition as one gets stuck with unprovable

goals. Finally the goal can be recorded as a theorem when it is proved.

A.2 Hints for Program Verification

This section is a record of some problems we ran into and how we solved

them. This is not a complete tutorial on how to prove theorems in HOL by any

means. But it does include some “advanced” tips particularly relevant to goals

which arise in software verification.

137

A.2.1 Level of Proof

After many decades of improvements, computers are often fast enough to be
used lavishly in proofs. Rather than spending 20 minutes crafting a minimal proof
of some subgoal which takes milliseconds of CPU time, a user can often employ a
general tactic. The general tactic is wasteful, often trying dozens of possibilities
before hitting upon a method to solve a goal and taking 30 seconds of CPU time.
But the user completes the step in two minutes rather than 20. Try the most
powerful tactics first. If it finishes in a reasonable time, you’re done. If not, you
can work out a more intelligent proof.

As computers get faster, the “brute force” approach to theorem proving will
make sense more often. Users can spend more time on formalizing properties and
problems and less on proving theorems. However there will always be theorems
which can’t be solved automatically and there will always be a need for more
powerful, efficient tactics to solve higher level theorems, so the basic tactics can’t

be ignored.

A.2.2 How to Prove Goals

Suppose you have a goal such as the following.

(--“(arSz = CA_SZ ar) /\ arSz > 0 /\ (j = 0) /\ (max = 0) ==>
j <= arSz /\ (CA_SZ ar = arSz) /\ arSz > 0 /\
(j > 0 ==> (?n. max = CA_IDX ar n)) /\
('n. 0<=n /\n<j==
max >= CA_IDX (CA (CA_FN ar) arSz) n)‘--)

These have the formaA...Ak= pA ... Az and tend to arise when proving that
one condition implies another, for instance, when strengthening preconditions. I
find these difficult even to read, let alone prove.

A good first step is to break it into pieces with STRIP_. THEN REWRITE_
TAC. The definition is

val STRIP_THEN_REWRITE_TAC =
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [];

138

This usually results in a few much simpler subgoals. Applied to the above goal,

we get these three subgoals.

(--0 >= CA_IDX (CA (CA_FN ar) (CA_SZ ar)) n‘--)

(=5 = 0°=-)
(--‘max = 0°--)
(-=5 > 0°=-)

(--‘arSz = CA_SZ ar‘--)
(--‘arSz > 0°--)
(=5 = 0°=-)

(--‘max = 0°--)

In fact, all these goals could be proved by SOLVE_TAC (see Sec. A.7.1). So
the original goal could be proved with the following tactic.

e (STRIP_THEN_REWRITE_TAC THEN SOLVE_TAC);

However many times subgoals can’t be proven automatically, so we shall continue

without SOLVE_TAC for now.

139

Working on these subgoals can often reveal missing assumptions, some
rewrite which should be done before breaking up the goal, or incorrectly entered
predicates (missing parentheses).

If examination doesn’t show any obvious errors, one must try to prove the
subgoals by hand. There are two general ways to prove these: show that the goal
follows from the assumptions or show a contradiction in the assumptions.

Consider the first subgoal (HOL’s style of printing shows the first subgoal
to be proved last).

(--‘0 <= CA_SZ ar‘--)
(--‘arSz = CA_SZ ar‘--)
(--‘arSz > 0°--)

(=5 = 0°=-)

(--‘max = 0°--)

We see CA_SZ ar in the goal and the same value in the top assumption, where it
is equal to arSz: this is a possibility. Looking around, we see arSz > 0 in the
next assumption. Clearly if arSz > 0 and arSz = CA_SZ ar, 0 <= CA_SZ ar, so
we have a direction to proceed. How can we do that with HOL tactics?

The first assumption will rewrite instances of arSz, not CA_SZ ar. We can
“bring down” (undischarge) arSz > 0, rewrite with assumptions, then ARITH_
TAC should solve the goal. The following tactic solves this goal.

e (UNDISCH_TAC (--‘arSz > 0‘--) THEN
ASM_REWRITE_TAC [] THEN ARITH_TAC);

Consider the next subgoal.

(--‘?n. 0 = CA_IDX ar n‘--)
(--‘arSz = CA_SZ ar‘--)
(--‘arSz > 0°--)

(-=*5 = 0°=-)
(--‘max = 0°--)
(=5 > 0°=-)

140

Note there is nothing in the assumptions about the values of CA_IDX (unless some-
thing can be rewritten with its definition). However we see that j = 0 and j > 0
are both assumed. This is a contradiction.

To demonstrate the contradiction we could try to undischarge j > 0 and
rewrite with assumptions (to get 0 > 0 ==> ...) or we could use
j > 0 ==>"(j = 0) (proved with ARITH_TAC) with IMP_RES_TAC.

I tried the first method, but ARITH TAC didn’t prove the goal. Rather
than trying to look up a theorem about “(0 > 0), I backed up and tried the second
method. The following tactic solved the goal.

e (IMP_RES_TAC (prove((--‘j > 0 ==> " (j 0) ‘--), ARITH_TAC)));

One can often get ARITH_TAC to prove a convenient lemma even when it fails to
help on the larger goal.
The last goal also cannot be proved true (directly).

(--Y0 >= CA_IDX (CA (CA_FN ar) (CA_SZ ar)) n‘--)
(--‘arSz = CA_SZ ar‘--)
(--‘arSz > 0°--)
(=45 = 0°=-)
(--‘max = 0°--)
(--‘0 <= n‘--)
(-=‘n < =)

However we again see j = 0 and n < j which are contradictory. We'll try the
approach which worked for the previous goal. Indeed the following tactic solves

the goal.
e (IMP_RES_TAC (prove((--‘n < j ==> "(j = 0)‘--), ARITH_TAC)));

Finally we can examine all the tactics which solved the subgoals to see if
there is anything in common. Since there isn’t, we just combine them into one

complete tactic.

e (STRIP_THEN_REWRITE_TAC THENL [

141

UNDISCH_TAC (--‘arSz > 0¢--) THEN
ASM_REWRITE_TAC [] THEN ARITH_TAC,
IMP_RES_TAC (prove((--¢j > 0 ==> “(j = 0)‘--), ARITH_TAC)),
IMP_RES_TAC (prove((--‘n < j ==> ~(j = 0)‘--), ARITH_TAC))
D;

A.2.3 HOL Error: Invalid Tactic

Problem: using CALL_TAC or some other tactic causes a HOL error with
only the error message Invalid tactic.

Example: While trying to prove file integrity of the entire thttpd, we tried
to use the proof of main(). Even the HOL handler didn’t yield much information.

e (CALL_TAC WF_fnp_fi_main) handle e=>Raise e;

Exception raised at Tactical.VALID:

Invalid tactic

Solution: In this case, the WF_fnp fi main used some assumptions which
we had not included in the overall proof. We added the assumptions, started over,
and the proof succeeded.

A.2.4 When Rewrites Don’t Work

Problem: a rewrite or match which should work just doesn’t.

Example: A simple rewrite should solve the following goal, but it doesn’t.

(--‘x + 2

Il
e
+
N
|
~

142

(--‘x = y‘--)

(Your case is probably much more complex than this.)

Solution: Check that the types actually match. In the above, x is a
string in the assumption, not a number. In complex goals, there may be unnoticed
typographical errors, too. The function WHY NOT reports such possible mismatches.

It reports the following situations in the current (top) goal.

1. variables or constants with the same name, but different types, for instance

(--‘gamma:num‘--) and (--‘gamma:string‘--).

2. variables or constants with the same type, but similar names, for instance
isQueue and isQueu. It does not consider names of two characters or less
(too many x’s and y’s would be reported) nor “misspellings” of the initial

characters (because of names like xSize and ySize).

Problem: a reduction, such as, SUBSE isn’t replaced.
Example: We try to prove a call to fprintf, but end up with a goal with

SUBSE in it. It represents binding formals to actuals.

1 subgoal:
(--‘Partial
((F = °F) /\ ~“(inode0f (deref F) = SYS_stdout) /\
SoFS hasConfidentialityFile SYS_FileSystem)
(Simple (Call (Var "fprintf" O Int)
(PL (Lval (Vref (Var "F" 0 (Ptr (Struct "FILE")))))
(PL (Const (CCstr "Y%s %s %s %s %s %d %d ") (Ptr Char))
(PL (Lval (Vref (Var "remotehost" 0
(Array Char (CCid "BUFSIZE")))))
(PL (Lval (Vref (Var "remoteuser" 0
(Array Char (CCid "BUFSIZE")))))
(PL (Lval (Vref (Var "daemonname" 0
(Array Char (CCid "BUFSIZE")))))
(PL (Lval (Vref (Var "remotedata" 0
(Array Char (CCid "BUFSIZE")))))

143

(PL (Lval (Vref (Var "timestamp" O (Array Char (CCint 64)))))
(PL (Call (Var "getpid" O Int) PLnull)
(PL (Call (Var "getppid" O Int) PLnull) PLnull)))))))))))

((F = "F) /\ ~“(inodeOf (deref F) = SYS_stdout) /\

SoFS hasConfidentialityFile SYS_FileSystem) ‘--)

- e(CALL_TAC
(SPEC (--‘hasConfidentialityFile:num->"unixFile->bool‘--)

(GEN (--‘preFSS:num->"unixFile->bool‘--) SYS_fprintf)) THEN
PURE_REWRITE_TAC [SoFS,COND_EXPAND,hasConfidentialityFile] THEN
BETA_TAC THEN STRIP_THEN_REWRITE_TAC THEN

(SOLVE_TAC ORELSE ALL_TAC));

1 subgoal:
(--‘“SUBSE
(1SYS_FileSystem errno.
(?FPRINTF _error. C_Resultb5 = int_neg FPRINTF_error) /\
inSomeCasesOf C_Resultb (?FPRINTF_errno.errno = FPRINTF_errno) /\
(linode. (inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem inode)) \/
(C_Result5 = 0) /\
('inode. (inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem inode)) \/
C_Result5 > 0 /\
(linode. (" (inode = inode0f (deref stream)) \/
(7prev.

((inode = SYS_stdout) ==> nonConfidential prev) /\
(appendFile (printfSpec format vargs) prev =
getFile SYS_FileSystem inode))) /\

((inode = inode0f (deref stream)) \/

((inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem inode)))) ==
(V'inode. (inode = SYS_stdout) ==

144

nonConfidential (getFile SYS_FileSystem inode)))

[Var "stream" 0 (Ptr (Struct "FILE")); Var "format" O(Ptr Char);
Var "%hgenvar%%4880" 0 (Array Char (CCid "BUFSIZE"));
Var "%hgenvar%%4879" 0 (Array Char (CCid "BUFSIZE"));
Var "%hgenvar%%4878" 0 (Array Char (CCid "BUFSIZE"));
Var "%hgenvar%44877" 0 (Array Char (CCid "BUFSIZE"));
Var "%hgenvar44876" O (Array Char (CCint 64));
Var "%hgenvar%%4875" 0 Int; Var "}lgenvary}4874" 0 Int]
[Lval (Vref (Var "F" 0 (Ptr (Struct "FILE"))));
Const (CCstr "%s %s %s %s %s %d %d ") (Ptr Char);
Lval (Vref (Var "remotehost" 0

(Array Char(CCid "BUFSIZE"))));
Lval (Vref (Var "remoteuser" 0

(Array Char(CCid "BUFSIZE"))));
Lval (Vref (Var "daemonname" 0

(Array Char(CCid "BUFSIZE"))));
Lval (Vref (Var "remotedata" 0

(Array Char(CCid "BUFSIZE"))));
Lval (Vref (Var "timestamp" O (Array Char (CCint 64))));
Call (Var "getpid" 0 Int) PLnull;
Call (Var "getppid" O Int) PLnull] ‘--)
(-= F = "F'=-)
(--"(inode0f (deref F) = SYS_stdout) ‘--)
(--‘linode. (inode = SYS_stdout) ==

nonConfidential (getFile SYS_FileSystem inode) ‘--)

Solution: Notice that the last two parameters are actually function calls.

Side effects should be separated first. In this case, SEP_CALL TAC works.

A.3 Simple Expressions

We shall begin with expressions. However, since expressions can have sig-

nificant side-effects, handling them becomes quite involved.

145

A.3.1 Assignment Expressions

In C assignments are expressions, not statements. However correctness
conditions are given over statements. Fortunately any expression can be a stand-
alone statement, so the distinction should not cause problems.

Here is the inference rule for simple assignment without side effects.

pre = postl
NoSE e
F {pre} (Simple (Assign (Vref x) e)) {post}

The first condition states that the precondition (pre) is the postcondition
with all x’s replaced by the expression e. The second condition states that the
expression has no side effects. If these two conditions are met, one can conclude
the partial correctness of the assignment statement. A complete explanation of

why this is the correct form for assignment can be found in [21].

Tactics

ASSIGN_TAC : tactic
SYNOPSIS

Prove goal of assignment to a variable or an array element.

KEYWORDS

tactic, assignment.

DESCRIPTION

Prove a goal consisting of a lone assignment statement of the form
Simple (Assign (Vref x) e) or Simple (Assign (Aryref a i) e). The weakest pre-
condition is computed from the goal’s postcondition and the assignment statement.
The computed precondition is strengthened using PRE_STRENGTHEN TAC to match
the goal’s precondition and the resulting implication subgoal is proved if possible.

Subgoals: The precondition strengthening may leave a subgoal.

146

FAILURE
LUnary PreIlnc (Vref (Var "B" 0 Int))

uncaught exception Fail: cexpr2hol SKIMP 2

The cexpr2hol SKIMP 2 means that the routines can’t produce an HOL expression
for the C expression. This is often because the the expression has side effects, such
as a function call or, in this case, an increment operator. First use one of the side

effect inference rules to separate out the side effect, then use ASSIGN_TAC.

EXAMPLE

Prove that afterx = 1; z > 0.

1 subgoal:
(--‘Partial T (Simple (Assign (Vref (Var "x" 0 Int))
(Const (CCint 1) Int)))
(x> 0)--)
- e (ASSIGN_TAC);
0K..

Goal proved.

SEE ALSO

SEQ_ASSIGN_TAC, FWD_SEQ_ASSIGN_TAC, PRE_SIDE_EFFECT_TAC,
POST_SIDE_EFFECT_TAC, PRE_STRENGTHEN_TAC.

SEQ_ASSIGN TAC : tactic
SYNOPSIS

Separate and prove the last statement, an assignment.

KEYWORDS

tactic, assignment, sequence.

147

DESCRIPTION

Separate the last statement, which must be an assignment, and prove cor-
rectness. The intermediate condition is the weakest precondition computed from
the final assignment. If the goal is just an assignment, ASSIGN_TAC is called, so
that REPEAT SEQ_ASSIGN_TAC works.

Subgoals: All statements preceding the last assignment are left. If the
statement is just an assignment, precondition strengthening may leave an implica-

tion.

FAILURE

See ASSIGN_TAC.

EXAMPLE

Prove swapping two variables, x and y, using a temporary variable, r. From

[21, page 17].

1 subgoal:
(--‘Partial ((x = "X) /\ (y = "Y))
(Seq
(Simple (Assign (Vref (Var "r" 0 Int))
(Lval (Vref (Var "x" 0 Int)))))
(Seq

(Simple (Assign (Vref (Var "x" 0 Int))
(Lval (Vref (Var "y" 0 Int)))))
(Simple (Assign (Vref (Var "y" 0 Int))
(Lval (Vref (Var "r" 0 Int)))))))
((x="Y) /\ (y ="X))--)
- e (REPEAT SEQ_ASSIGN_TAC)
0K..

Goal proved.

148

SEE ALSO

ASSIGN_TAC, FWD_SEQ_ASSIGN_TAC, TL_SEQUENCE_TAC, PRE_SIDE_
EFFECT_TAC, POST_SIDE EFFECT_TAC, PRE_STRENGTHEN_TAC.

FWD_SEQ_ASSIGN_TAC : tactic
SYNOPSIS

Separate and prove the first statement, a variable initialization.

KEYWORDS

tactic, assignment, sequence.

DESCRIPTION

Separate the first statement, which must be an assignment, try to deduce
an appropriate postcondition, and try prove it. In other words, add a variable
initialization to the precondition. The variable must not be in the precondition.

Subgoals: All statements following the first assignment are left. If the
statement is just an assignment, precondition strengthening may leave an implica-

tion.

FAILURE
uncaught exception Fail: FWD_SEQ_ASSIGN_TAC: cannot handle lhs

in precondition (yet)

The variable being assigned is already in the precondition. For instance, this tactic

handles

(--‘Partial (a > 7)
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "a" 0 Int)))))
(a>7 /\ (max = a))‘--)

but not the following since it has max < 0 in the precondition.

149

(--‘Partial (a > 7 /\ max < 0)
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "a" 0 Int)))))
(a>7 /\ (max = a))‘--)

Use PRE_STRENGTHEN _TAC to get rid of the max < 0 in the precondition first.

EXAMPLE

At the beginning of a proof of division by repeated subtraction, “initialize”

r to x and q to 0.

1 subgoal:
(--‘Partial (("X =x) /\ (Y = y))
(Seq (Simple (Assign (Vref (Var "r" 0 Int))
(Lval (Vref (Var "x" 0 Int)))))
(Seq (Simple (Assign (Vref (Var "q" O Int))
(Const (CCint 0) Int)))
(CWhile (Binary (Lval (Vref (Var "y" 0 Int))) LEq
(Lval (Vref (Var "r" 0 Int))))
(Seq (Simple (Assign (Vref (Var "r" 0 Int))
(Binary (Lval (Vref (Var "r" 0 Int))) Sub
(Lval (Vref (Var "y" 0 Int))))))
(Simple (Assign (Vref (Var "q" O Int))
(Binary (Lval (Vref (Var "q" O Int))) Add
(Const (CCint 1) Int))))))))
(r<y/\NG&E=r+yx*xq) /\ CX=x)/\ CCY =y))--)
- e (REPEAT FWD_SEQ_ASSIGN_TAC);
1 subgoal:
(-=‘Partial (("X =x) /\ Y =y3) /\ (r =x) /\ (q =0))
(CWhile (Binary (Lval (Vref (Var "y" 0 Int))) LEq
(Lval (Vref (Var "r" 0 Int))))
(Seq (Simple (Assign (Vref (Var "r" 0 Int))
(Binary (Lval (Vref (Var "r" 0 Int))) Sub
(Lval (Vref (Var "y" 0 Int))))))

150

(Simple (Assign (Vref (Var "q" O Int))
(Binary (Lval (Vref (Var "q" O Int))) Add
(Const (CCint 1) Imnt))))))
r<y/\NG&E=r+y*xq /\ CX=x)/\ (Y =y))--)

USES

With REPEAT this automatically handles a series of variable initializations.

SEE ALSO

ASSIGN_TAC, SEQ_ASSIGN_TAC, SEQUENCE_TAC, PRE_SIDE EFFECT_
TAC, POST_SIDE EFFECT_TAC, PRE_STRENGTHEN_TAC.

A.3.2 Expressions With No Effect

Our method of handling side effects is to transform the original code into
an equivalent sequence which passes results by logical variables. For instance, to
prove

- {PRE} if (++a < MAX) ... {POST}
we can prove the following subgoals.

- {PRE} ++a < MAX {PRE A (C_Result = (a < MAX))}
- {PRE A (C_Result = (a < MAX))} if (C_Result) ... {POST}

To avoid infinite regress, the result of the test is only equated with a variable in the
postcondition: we don’t add another assignment statement, such as C_ Result =
a < MAX. After separating the preincrement, we have the following subgoal. (The

preincrement is a separate subgoal which establishes PRE.)
- {PRE} a < MAX {PRE A (C_Result = (a < MAX))}

The following inference rule allows us to reason about expressions which have no

side effects, as a < MAX above, except to assign the result to a logical variable.

pre = pOStg_Result
NoSE e
F {pre} Simple e {post}

151

Tactics

EXPR_TAC : tactic
SYNOPSIS

Prove an expression which has no side effects.

KEYWORDS

tactic, expression.

DESCRIPTION

Prove a simple expression which may leave results in a logical variable.
The expression cannot have side effects. If necessary, the computed precondition
is strengthened to match the goal’s precondition. The resulting implication subgoal
is proved if possible.

Subgoals: The precondition strengthening may leave a subgoal.

FAILURE

uncaught exception Fail: multiple C_Result’s in post: use

GENERAL _EXPR_TAC

If the postcondition has more than one C_Result, the user must specify which one

to use.
unsolved goals

This HOL error may mean that the expression has side effects and NoSE e could

not be proved.

EXAMPLE

1 subgoal:
(--‘Partial ((b=12a) /\Aa< "c+1/\ (c ="c))
(Simple
(Binary (Lval (Vref (Var "a" 0 Int))) Add

152

(Lval (Vref (Var "b" 0 Int)))))
((b=a /\Na<"c+1/\ (c="c)
/\ (C_Resultl = a + b)) ‘--)
- e (EXPR_TAC);
0K..

Goal proved.

SEE ALSO

GENERAL _EXPR_TAC, ASSIGN_TAC, LUNARY_TAC, PRE_SIDE EFFECT_
TAC, POST_SIDE EFFECT_TAC, PRE_STRENGTHEN_TAC.

GENERAL EXPR TAC : (string -> tactic)
SYNOPSIS

Prove an expression which has no side effects.

KEYWORDS

tactic, expression.

DESCRIPTION

Prove a simple expression which leave results in a variable. The expression
cannot have side effects. If necessary, the computed precondition is strengthened
to match the goal’s precondition and the resulting implication subgoal is proved if
possible. The result is bound to a variable named by the operand.

Subgoals: The precondition strengthening may leave a subgoal.

FAILURE

unsolved goals

This HOL error may mean that the expression has side effects and NoSE e could

not be proved.

153

EXAMPLE

1 subgoal:
(--‘Partial ((b = a) /\ a < ¢ /\ (c = C_Result2))
(Simple
(Binary (Lval (Vref (Var "a" 0 Int))) Add
(Lval (Vref (Var "b" 0 Int)))))
((b =a) /\ a <c/\ (c = C_Result?)
/\ (C_Resultl = a + b)) ‘--)
- e (GENERAL_EXPR_TAC "C_Resultil");
0K..

Goal proved.

USES

This is a general form of EXPR_TAC for writing other tactics (binding a

result to a particular variable) or when there is more than one result.

SEE ALSO

EXPR_TAC, ASSIGN_TAC, LUNARY_TAC, PRE_SIDE EFFECT_TAC, POST_
SIDE_EFFECT_TAC, PRE_STRENGTHEN_TAC.

A.3.3 Side Effect Expressions

The C language has operators which change the value of variables. We
have inference rules which isolate expressions with these operators, but we have
not deeply embedded the semantics of the operations. We use shallow (i.e., defined

by SML routines) axiom introduction to create basic theorems about these.

IS_AXIOM pre stm post
F {pre} stm {post}

154

Tactics

LUNARY _TAC : tactic
SYNOPSIS

Prove an increment or decrement statement.

KEYWORDS

tactic, statement.

DESCRIPTION

Prove the result of a statement consisting of just ++ or --. That is, the

code must be
Simple (LUnary op lval)

where op is Prelnc, PostInc, PreDec, or PostDec. The precondition is strength-
ened to be the original postcondition with the variable replaced by its new value

(see ASSIGN_TAC). The postcondition is weakened to assign the result to a new

logical variable. The strengthening and weakening implications are proved if pos-
sible.

Subgoals: It leaves no subgoal unless the postcondition does not follow

from the precondition.

FAILURE

expected operator not found: LUnary

The statement is not in the form Simple (Lunary ...). Simplify the statement

first.

EXAMPLE

Show that b is incremented.

155

1 subgoal:
(--‘Partial ((b = B) /\ B < 1830)
(Simple (LUnary PreInc (Vref (Var "b" 0 Int))))
((b =B+ 1) /\ B < 1830)‘--)
- e (LUNARY_TAC);
OK..
Goal proved.

SEE ALSO

EXPR_TAC, ASSIGN_TAC, PRE_SIDE EFFECT_TAC, POST_SIDE_EFFECT_
TAC, PRE_STRENGTHEN_TAC, POST_WEAKEN_TAC.

GENERAL LUNARY TAC : (string -> term -> tactic)
SYNOPSIS

A general form of LUNARY _TAC.

KEYWORDS

tactic, statement.

DESCRIPTION

This is a general form of LUNARY TAC. It is only used internally now. It
may be useful if the result of the expression must be used.
SEE ALSO

LUNARY_TAC.

A.3.4 The Empty Statement

The empty statement doesn’t change anything. Thus the inference rule for

it is simple.

F {pre} EmptyStmt {pre}

156

Tactics

SKIP TAC : tactic
SYNOPSIS

Prove the empty statement.

KEYWORDS

tactic, skip, empty, statement.

DESCRIPTION

Prove the empty statement. This weakens the postcondition to match it
with the precondition.
Subgoals: The postcondition weakening may leave a subgoal.

FAILURE

Always succeeds if the statement is EmptyStmt.

EXAMPLE

1 subgoal:
(--‘Partial
(b=2a) /Na<c+1/\ (c="c)
/\ (C_Result7 = a + b) /\ C_Result7 < 2 * c)
EmptyStmt
(b=2a) /\a<"c/\ (c="c))--)
- e (SKIP_TAC);

Goal proved.

USES

Empty statements occasionally occur in loops or conditionals.

SEE ALSO

EXPR_TAC, LUNARY_TAC, POST WEAKEN_TAC.

157

A.4 Statement Manipulation and Conditions
A.4.1 Replacing Statements with Semantically Equivalents

A statement may be replaced with a semantically equivalent one. This
allows us to use this one, general inference rule for many types of statement trans-

formations.

F SEM_EQ stml stm2
F {pre} stml {post}

F {pre} stm2 {post} (A.1)

This inference rule is primarily used to separate side effects and reassociate

sequences. Here are the inference rules for pre- and postevaluation side effects.

PreEval 1v expr s1 s2

SEM_EQ (Seq (Simple expr) s1) s2

PostEval sl expr s2
SEM_EQ (Seq s1 (Simple expr)) s2

That is, a sequence is semantically equivalent to another statement if the

sequence is a proper pre- or postevaluation separation.

Tactics

PRE _SIDE_EFFECT_TAC : (term -> term -> tactic)
SYNOPSIS

Separate an expression with a preevaluation side effect.

KEYWORDS

tactic, expression, preevaluation, side effect.

DESCRIPTION

Separates the second term, a C expression in AST form, from the cur-

rent goal statement and introduces the first term, an intermediate condition, as

158

the condition between the two new subgoals. The expression must not have any
postevaluation side effects.

Side effects can only be separated from Simple, If, IfElse, or Ret state-
ments. EmptyStmt, EmptyRet, Break, and Cont statements never have expressions.
Use GENERAL WHILE TAC or WHILE_TAC for CWhile statements, one of the
sequence tactics, such as SEQUENCE_TAC, for Seq statements, and BLOCK_TAC
for Block statements.

Subgoals: The first subgoal is the expression which was separated. The
second subgoal is the original statement with the expression replaced by a reference

value.

FAILURE

expr is: LUnary PreInc (Vref (Var "b" 0 Int))

stmt is: Simple (Assign (Vref (Var "a" 0 Int)) (LUnary PostInc
(Vref (Var "b" 0 Int))))

uncaught exception Fail: expr not found in stmt in

sep_preeval_expr

The expression passed to PRE_SIDE_ EFFECT_TAC was not found in the state-
ment. (Note the expression has PreInc and the statement has PostInc above.)
Change the expression to match the piece which you want to separate from the

statement.

LUnary PostInc (Vref (Var "b" 0 Int))
semeqTactics.sep_preeval_expr: cannot prove that expr doesn’t

have post-eval side effects

The expression probably has some postevaluation side effects. If so, separate
a smaller piece which only has preevaluation side effects or use POST _SIDE_
EFFECT_TAC instead.

semeqTactics.sep_preeval_expr: stmt must be (Simple e),

(If e s), (IfElse e s1 s2), or (Ret e)

Side effects can only be separated from Simple, If, IfElse, or Ret statements.

Use another tactic to simplify the statement first.

159

EXAMPLE

Prove that after a=++b; both a and b are the original B plus 1.

1 subgoal:
(--‘Partial (b = B)
(Simple (Assign (Vref (Var "a" 0 Int))
(LUnary PrelInc (Vref (Var "b" 0 Int)))))
((a=B+ 1) /\ (b=B+1))--)

- e (PRE_SIDE_EFFECT_TAC (--‘b =B + 1--)
(--‘LUnary PreInc (Vref (Var "b" 0 Int))‘--));

0K..
2 subgoals:
(--‘Partial (b = B + 1)
(Simple (Assign (Vref (Var "a" 0 Int))
(Lval (Vref (Var "b" 0 Int)))))
((a=B+ 1) /\ (b=B+1))-)

(--‘Partial (b = B)
(Simple (LUnary PreInc (Vref (Var "b" 0 Int))))
(b =B+ 1))
SEE ALSO

POST_SIDE_EFFECT TAC, GENERAL WHILE_TAC, WHILE_ TAC, BLOCK_
TAC, SEQUENCE_TAC, LUNARY_TAC.

GENERAL PRE SIDE EFFECT TAC : (term -> string -> tactic)
SYNOPSIS

A general form of PRE SIDE_EFFECT _TAC.

160

KEYWORDS

tactic, side effect, statement.

DESCRIPTION

This is a pure form of PRE SIDE_ EFFECT _TAC: it doesn’t do the SE-
QUENCE_TAC. It is only used internally.

SEE ALSO

PRE_SIDE_EFFECT_TAC.

POST_SIDE EFFECT_TAC : (term -> term -> tactic)
SYNOPSIS

Separate an expression with a postevaluation side effect.

KEYWORDS

tactic, expression, postevaluation, side effect.

DESCRIPTION

Separates the second term, a C expression in AST form, from the cur-
rent goal statement and introduces the first term, an intermediate condition, as
the condition between the two new subgoals. The expression must not have any
preevaluation side effects.

Side effects can only be separated from Simple statements. EmptyStmt,
EmptyRet, Break, and Cont statements never have expressions. Use one of the
sequence tactics for Seq statements and BLOCK_TAC for Block statements. Be-
cause the semantics are so complex, we have no inference rules for other statements,
yet.

Subgoals: The first subgoal is the original statement with the expression

replaced by a reference value. The second subgoal is the separated expression.

161

FAILURE

expr is: LUnary PreInc (Vref (Var "b" 0 Int))

stmt is: Simple (Assign (Vref (Var "a" 0 Int)) (LUnary PostInc
(Vref (Var "b" 0 Int))))

uncaught exception Fail: expr not found in stmt in

sep_posteval_expr

The expression passed to POST _SIDE_EFFECT _TAC was not found in the state-
ment. (Note the expression has PreInc and the statement has PostInc above.)
Change the expression to match the piece which you want to separate from the

statement.

LUnary Prelnc (Vref (Var "b" 0 Int))
semeqTactics.sep_posteval_expr: cannot prove that expr doesn’t

have pre-eval side effects

The expression probably has some preevaluation side effects. If so, separate

a smaller piece which only has postevaluation side effects or use PRE_SIDE_

EFFECT_TAC instead.

semeqTactics.sep_preeval_expr: stmt must be (Simple (Assign 1

expr))

Side effects can only be separated from Simple assignment statements. Use another

tactic to simplify the statement first or extend the inference rules.

EXAMPLE

Prove that after a=b++; a equals the original B and b equals the original B

plus 1.

1 subgoal:
(--‘Partial (b = B)
(Simple (Assign (Vref (Var "a" 0 Int))
(LUnary PostInc (Vref (Var "b" 0 Int)))))
((a=B) /\ (b=B+ 1))--)

162

- e (POST_SIDE_EFFECT_TAC

(-==“(a=B) /\ (b = B)--)

(--‘LUnary PostInc (Vref (Var "b" 0 Int))‘--));

0K..

2 subgoals:

(--‘Partial ((a = B) /\ (b = B))

(Simple (LUnary PostInc (Vref (Var "b" 0 Int))))
((a=B) /\ (b=B+ 1))--)

(--‘Partial (b = B)
(Simple (Assign (Vref (Var "a" 0 Int))
(Lval (Vref (Var "b" 0 Int)))))
((a=B) /\ (b =B))‘--)
SEE ALSO

PRE_SIDE EFFECT_TAC, GENERAL WHILE TAC, WHILE_TAC, BLOCK_TAC,
SEQUENCE_TAC, LUNARY_TAC.

GENERAL POST SIDE EFFECT TAC : (term -> tactic)
SYNOPSIS

A general form of POST _SIDE EFFECT_TAC.

KEYWORDS

tactic, side effect, statement.

DESCRIPTION

This is a pure form of POST_SIDE_ EFFECT _TAC: it doesn’t do the SE-
QUENCE_TAC. It is only used internally.

SEE ALSO

PRE_SIDE_EFFECT_TAC.

163

SEM_EQ_TAC : (term -> tactic)
SYNOPSIS

Reduce a semantic equivalence goal.

KEYWORDS

tactic, semantic equivalence.

DESCRIPTION

This is only present for completeness.

USES

I have never used it.

A.4.2 Sequence Rule

The sequence rule states that executing two statements in sequence is the

same as executing them separately with a matching intermediate condition.

F {pre} stml {interim}
F {interim} stm2 {post}
F {pre} (Seq stml stm2) {post}

Tactics

SEQUENCE_TAC : (term -> tactic)
SYNOPSIS

Separate the first statement from a sequence.

KEYWORDS

tactic, sequence.

164

DESCRIPTION

Split the first statement from a sequence. The operand is the intermediate
condition.
Subgoals: The first subgoal is the first statement in the sequence. The

second subgoal is the other statements.

FAILURE

Exception raised at Tactical.THEN:
Tactical .THEN: Resolve.MATCH_MP_TAC: No match

Could be applying SEQUENCE_TAC to a statement which is not a SEQ.

EXAMPLE

The following two If statements find the maximum of three numbers (when

max is already assigned the value of the first, a). Split them into subgoals.

1 subgoal:
(--‘Partial (max = a)
(Seq
(If (Binary (Lval (Vref (Var "b" O Int))) Gt
(Lval (Vref (Var "max" 0 Int))))
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "b" 0 Int))))))
(If (Binary (Lval (Vref (Var "c" O Int))) Gt
(Lval (Vref (Var "max" 0 Int))))
(Simple (Assign (Vref (Var "max" O Int))
(Lval (Vref (Var "c" 0 Int)))))))
(((max = a) \/ (max = b) \/ (max = c)) /\
max >= a /\ max >= b /\ max >= c)‘--)

- e (SEQUENCE_TAC (--°‘((max=a)\/(max=b))
/\ max >= a /\ max >= b‘--));

165

0K..
2 subgoals:
(--‘Partial (((max = a) \/ (max = b)) /\
max >= a /\ max >= b)
(If (Binary (Lval (Vref (Var "c" O Int))) Gt
(Lval (Vref (Var "max" 0 Int))))
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "c" 0 Int))))))
(((max = a) \/ (max = b) \/ (max = c)) /\

max >= a /\ max >= b /\ max >= c)‘--)

(--‘Partial (max = a)
(If (Binary (Lval (Vref (Var "b" 0 Int))) Gt
(Lval (Vref (Var "max" 0 Int))))
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "b" 0 Int))))))
(((max = a) \/ (max = b)) /\ max >= a /\ max >= b)‘--)
SEE ALSO

TL_SEQUENCE_TAC, SEQ_ASSIGN_TAC, FWD_SEQ_ASSIGN_TAC.

TL_SEQUENCE_TAC : (term -> tactic)
SYNOPSIS

Separate the last statement from a sequence.

KEYWORDS

tactic, sequence.

DESCRIPTION

Split the last statement from a sequence. The operand is the intermediate

condition.

166

Subgoals: The first subgoal is all but the last statement in the sequence.

The second subgoal is the last statement.

USES

This is used to implement SEQ_ASSIGN_TAC.

SEE ALSO

SEQUENCE_TAC, SEQ_ASSIGN_TAC, FWD_SEQ_ASSIGN_TAC.

A.4.3 Precondition Strengthening

The precondition of a partial correctness theorem can always be replaced

with a logically stronger condition.

pre = weaker

F {weaker} stm {post}
F {pre} stm {post}

Tactic

PRE_STRENGTHEN_TAC : (term -> tactic)
SYNOPSIS

Prove a goal with a weaker precondition.

KEYWORDS

tactic, precondition, stronger.

DESCRIPTION

Replace the current goal with a goal having a weaker precondition, the
operand. Since we’re doing backward proofs, the inference rule for precondition
strengthening leads to a goal with a weaker precondition.

Subgoals: The first subgoal is the implication. The second subgoal is the

statement with the weaker precondition.

167

FAILURE

Always succeeds if the goal is the proper form.

EXAMPLE

Weaken the precondition so it matches the assumption. The first subgoal

can be solved with TAUT _TAC, and the second with ASM_REWRITE_TAC.

1 subgoal:
(--‘Partial ((p /\ "s) /\ "s) C2 q‘--)

(--‘Partial (p /\ "s) C2 gq‘--)
- e (PRE_STRENGTHEN_TAC (--‘p /\ "s‘--));
OK..
2 subgoals:
(--‘Partial (p /\ “s) C2 q‘--)

(--‘Partial (p /\ "s) C2 q‘--)

(== /\ "s) /\ "s ==>p /\ "s‘--)

USES

This is often used to get the precondition in the right form, say as the

invariant of a while loop, or to drop extraneous conditions.

SEE ALSO

POST_WEAKEN_TAC.

A.4.4 Postcondition Weakening

The postcondition of a partial correctness theorem can always be replaced

with a logically weaker condition.

168

stronger = post
I {pre} stm {stronger}
F {pre }stm {post}

Tactic

POST_WEAKEN_TAC : (term -> tactic)
SYNOPSIS

Prove a goal with a stronger postcondition.

KEYWORDS

tactic, postcondition, weaker.

DESCRIPTION

Replace the current goal with a goal having a stronger postcondition, the
operand. Since we're doing backward proofs, the inference rule for postcondition
weakening leads to a goal with a stronger postcondition.

Subgoals: The first subgoal is the implication. The second subgoal is the

statement with the stronger postcondition.

FAILURE

Always succeeds if the goal is the proper form.

EXAMPLE

Strengthen the postcondition so it matches an LUnary axiom. The first

subgoal can be solved with TAUT _TAC, and the second with LUNARY _TAC.

1 subgoal:
(--‘Partial (b = B) (Simple (LUnary PostInc
(Vref (Var "b" 0 Int))))
(b=B + 1)‘--)

169

- e (POST_WEAKEN_TAC (--‘(b = B + 1)
/\ (C_Result2 = b - 1)‘--));
0K..
2 subgoals:
(--‘Partial (b = B) (Simple (LUnary PostInc
(Vref (Var "b" 0 Int))))
((b =B+ 1) /\ (C_Result2 =b - 1))‘--)

(--‘(b=B + 1) /\ (C_Result2 =b - 1) ==> (b =B + 1)‘--)

USES

This is rarely used explicitly in proofs. It is often used to implement other

tactics to match postconditions.

SEE ALSO

PRE_STRENGTHEN_TAC.

A.4.5 Partial Correctness Conjunction

The conditions for two partial correctness theorems of the same code can

be AND’d together.

F {prel} stm {posti}
F {pre2} stm {post2}
F {pre1l A pre2} stm {postl A post2}

There is no special tactic for this inference rule because it hasn’t been used

in proofs, yet.

A.4.6 Partial Correctness Disjunction

The conditions for two partial correctness theorems of the same code can

be OR’d together.

F {prel} stm {posti}
F {pre2} stm {post2}
F {prel V pre2} stm {postl V post2}

170

There is no special tactic for this inference rule because it hasn’t been used

in proofs, yet.

A.5 Conditional and Loop Statements
A.5.1 Two-armed Conditionals

We can conclude the partial correctness of an If-Then-Else statement if
both branches establish the postcondition. More particularly, the following must

be true.

1. If the precondition and the test holds, after the “then” code finishes, the

postcondition is true.

2. If the precondition and the complement of the test holds, after the “else code

finishes, the postcondition is true.

3. The value of the test expression in the assertion language is “test.”

IS_VALUE expr test
F {pre A test} stml {post}
F {pre A “test} stm2 {post}

F {pre} (IfElse expr stml stm2) {post}
This is the rule we originally implemented to prove thttpd. It is much

(A.2)

simpler than the more complete Rule 5.6 given in Sect. 5.4, page 34. Since thttpd
does not have any if statements with postevaluation side effects in the tests, we

have not implemented the inference rule or written a tactic for it.

Tactics

IFTHENELSE TAC : tactic
SYNOPSIS

Separate a conditional into subgoals for each branch.

KEYWORDS

tactic, conditional.

171

DESCRIPTION

Separate an IfElse goal into a subgoal for the true or “then” branch and
a subgoal for the false or “else” branch. The correct logical test is generated from
the code’s test expression.

Subgoals: The first subgoal is the “true” or “then” branch. The second

subgoal is the “false” or “else” branch.

FAILURE

Call (Var "strlen" 0 Int) (PL (Lval (Vref
(Var "bs1" 0 (Array Char (CCid "BUFSIZE"))))) PLnull)

uncaught exception Fail: cexpr2hol SKIMP 4

You may have a side effect in the test. Use PRE SIDE EFFECT_TAC or
SEP_CALL_TAC to separate the side effect first.

EXAMPLE

Prove if (a > b) max = a; else max = b;. Both goals can be resolved

with ASSIGN_TAC.

1 subgoal:
(--‘Partial T
(IfElse

(Binary (Lval (Vref (Var "a" 0 Int))) Gt
(Lval (Vref (Var "b" 0 Int))))
(Simple (Assign (Vref (Var "max" O Int))
(Lval (Vref (Var "a" 0 Int)))))
(Simple (Assign (Vref (Var "max" O Int))
(Lval (Vref (Var "b" 0 Int))))))
(((max = a) \/ (max = b)) /\ max >= a /\ max >= b)‘--)
- e (IFTHENELSE_TAC);
0K..
2 subgoals:

172

(--‘Partial (T /\ ~(a > b))
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "b" 0 Int)))))
(((max = a) \/ (max = b)) /\ max >= a /\ max >= b)‘--)

(--‘Partial (T /\ a > b)
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "a" 0 Int)))))
(((max = a) \/ (max = b)) /\ max >= a /\ max >= b)‘--)

SEE ALSO

IFTHEN_TAC, GENERAL_IFTHENELSE TAC.

GENERAL IFTHENELSE TAC : (term -> tactic)
SYNOPSIS

A general form of IFTHENELSE _TAC.

KEYWORDS

tactic, conditional.

DESCRIPTION

This is a general form of IFTHENELSE _TAC to explicitly provide the test
condition.

Subgoals: The first subgoal is the “true” or “then” branch. The second
subgoal is the “false” or “else” branch.

FAILURE

Call (Var "strlen" 0 Int) (PL (Lval (Vref
(Var "bs1" 0 (Array Char (CCid "BUFSIZE"))))) PLnull)

uncaught exception Fail: cexpr2hol SKIMP 4

173

You may have a side effect in the test. Use PRE_SIDE EFFECT_TAC or
SEP_CALL_TAC to separate the side effect first.

EXAMPLE
Prove the following [21, exercise 14, pp 34 & 35].

F{PAs}c1{qQ} F{P A~s}c2{q}
I {P} if S then C1 else if ~S then C2 {Q}

1 subgoal:
(--‘Partial p (IfElse Sc C1 (If (Unary Not Sc) C2)) q‘--)
(--“IS_VALUE Sc s‘--)
(--f‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 q‘--)
(--‘Partial (p /\ "s) C2 gq‘--)
- e (GENERAL_IF_THENELSE_TAC (--‘s:bool‘--));
0K..
3 subgoals:
(--‘Partial (p /\ “s) (If (Unary Not Sc) C2) gq‘--)
(--“IS_VALUE Sc s‘--)
(--f‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 gq‘--)
(--‘Partial (p /\ "s) C2 gq‘--)

(--‘Partial (p /\ s) C1 q‘--)
(--‘IS_VALUE Sc s‘--)
(--‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 gq‘--)
(--‘Partial (p /\ "s) C2 gq‘--)

(--‘IS_VALUE Sc s‘--)

174

(--‘IS_VALUE Sc s‘--)
(--“IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 q‘--)
(--‘Partial (p /\ "s) C2 gq‘--)

- e (ASM_REWRITE_TAC [1);

0K..

Goal proved.

Remaining subgoals:
(--‘Partial (p /\ “s) (If (Unary Not Sc) C2) gq‘--)
(--“IS_VALUE Sc s‘--)
(--‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 gq‘--)
(--‘Partial (p /\ "s) C2 gq‘--)

(--‘Partial (p /\ s) C1l q‘--)
(--‘IS_VALUE Sc s‘--)
(--‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 gq‘--)
(--‘Partial (p /\ "s) C2 gq‘--)
- e (ASM_REWRITE_TAC [1);
0K..

Goal proved.

Remaining subgoals:
(--‘Partial (p /\ “s) (If (Unary Not Sc) C2) gq‘--)
(--¢IS_VALUE Sc s‘--)
(--‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 q‘--)

175

(--‘Partial (p /\ "s) C2 gq‘--)

- e (GENERAL_IFTHEN_TAC (--‘"s‘--));

0K..

3 subgoals:

(--‘Partial ((p /\ "s) /\ "s) C2 q‘--)

(--“IS_VALUE Sc s‘--)
(--‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 gq‘--)
(--‘Partial (p /\ "s) C2 gq‘--)

(==“(p /\ "s) /\ "7s ==> q‘--)
(--“IS_VALUE Sc s‘--)
(--¢IS_VALUE (Unary Not Sc) (“s)‘--)
(--‘Partial (p /\ s) C1 q‘--)
(--‘Partial (p /\ "s) C2 q‘--)

(--‘IS_VALUE (Unary Not Sc) ("s)‘--)

(--“IS_VALUE Sc s‘--)

(--‘IS_VALUE (Unary Not Sc) ("s)‘--)
(--‘Partial (p /\ s) C1 q‘--)
(--‘Partial (p /\ "s) C2 gq‘--)

USES

It is useful for proving general theorems or implementing other tactics.

SEE ALSO

IFTHENELSE_TAC.

176

A.5.2 One-armed Conditionals

We can conclude the partial correctness of an If-Then statement if the
branch and the failed test establish the postcondition. More particularly, the

following must be true.

1. If the precondition and the test holds, after the “then” code finishes, the

postcondition is true.

2. If the precondition and the complement of the test holds, the postcondition

1s true.

3. The value of the test expression in the assertion language is “test.”

IS_VALUE expr test
F {pre A test} code {post}
F pre A “test = post
F {pre} (IfElse expr code) {post}

This inference rule is proved from the If-Then-Else rule (A.2, page 171) and

the semantic equivalence of If-Then and If-Then-Else with an empty “else” clause.

Tactics

IFTHEN_TAC : tactic
SYNOPSIS

Separate a conditional into subgoals for each branch.

KEYWORDS

tactic, conditional.

DESCRIPTION

Separate an If goal into a subgoal for the true or “then” branch and an
implication for the false case. The correct logical test is generated from the code’s

test expression.

177

Subgoals: The first subgoal is the implication. The second subgoal is
the true or “then” branch. This is opposite the order of subgoals in IFTHEN-
ELSE_TAC. The implication (when the test is false) comes first since it is typically

easier to prove than the true branch.

FAILURE

Call (Var "strlen" 0 Int) (PL (Lval (Vref
(Var "bs1" 0 (Array Char (CCid "BUFSIZE"))))) PLnull)

uncaught exception Fail: cexpr2hol SKIMP 4

You may have a side effect in the test. Use PRE_SIDE EFFECT_TAC or
SEP_CALL_TAC to separate the side effect first.

EXAMPLE

Prove the following finds the maximum of two variable: max = a; if (max
< b) max = b;. The implication can be solved by ARITH _TAC, and the “then”
branch can be solved by ASSIGN_TAC.

1 subgoal:
(--‘Partial (max = a)
(1f
(Binary (Lval (Vref (Var "max" O Int))) Lt
(Lval (Vref (Var "b" 0 Int))))
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "b" 0 Int))))))
(((max = a) \/ (max = b)) /\ max >= a /\ max >= b)‘--)
- e (IFTHEN_TAC);
0K..
2 subgoals:
(--‘Partial ((max = a) /\ max < b)
(Simple (Assign (Vref (Var "max" 0 Int))
(Lval (Vref (Var "b" 0 Int)))))

178

(((max = a) \/ (max = b)) /\ max >= a /\ max >= b)‘--)

(--‘(max = a) /\ “(max < b) ==>
((max = a) \/ (max = b)) /\ max >= a /\ max >= b‘--)
SEE ALSO

IFTHENELSE TAC, GENERAL_TFTHEN_TAC.

GENERAL IFTHEN TAC test : tactic
SYNOPSIS

A general form of IFTHEN _TAC.

KEYWORDS

tactic, conditional.

DESCRIPTION

This is a general form of IFTHEN_TAC to explicitly provide the test con-
dition.

Subgoals: The first subgoal is the implication. The second subgoal is the
true or “then” branch. This is opposite the order of subgoals in GENERAL IF-
THENELSE_TAC. The implication (when the test is false) comes first since it is

typically easier to prove than the true branch.

FAILURE

Call (Var "strlen" 0 Int) (PL (Lval (Vref
(Var "bs1" 0 (Array Char (CCid "BUFSIZE"))))) PLnull)

uncaught exception Fail: cexpr2hol SKIMP 4

You may have a side effect in the test. Use PRE_SIDE EFFECT_TAC or
SEP_CALL_TAC to separate the side effect first.

179

EXAMPLE

See GENERAL_IFTHENELSE _TAC for a similar example.

USES

It is useful for proving general theorems or implementing other tactics.

SEE ALSO

IFTHEN_TAC, GENERAL_IFTHENELSE TAC.

A.5.3 While Loops

This inference rule handles while loops which may have preevaluation or
postevaluation side effects in the test. To handle side effects, we separate them
from the test itself. The diagram in Figure 5.4, page 36, shows the flow of control
and the conditions on each arc. The statement preStm has all the preevaluation
side effects of the test, and the statement postStm has all the postevaluation side
effects. If there are no preevaluation or no postevaluation side effects, preStm or
postStm may be the empty statement. The IS VALUE predicate does not allow
side effects, so enforces that the test expression has no side effects. Notice that
since the postevaluation side effects take place after the test is evaluated, postStm

1s found on both the “false” and “true” cases.

F (preStm = EmptyStmt) V
(preStm = (Simp preSeEx)A NoPostSE preSeEx)
F (postStm = EmptyStmt) V
(postStm = (Simp postSeEx)A NoPreSE postSeEx)
- SEMEQ (Seq preStm (Seq (Simp testEx) postStm)) (Simp ex)
I IS_VALUE testEx test
F {invariant} preStm {testState}
I {testState A test} postStm {bodyCond}
F {bodyCond} body {invariant}
I {testState A “test} postStm {postCond}
I postCond = post
F {invariant} (CWhile ex body) {post}

180

This inference rule is slightly stronger then inference rule (5.8) given in
Sect 5.5, page 36. This rule has postcondition weakening built-in (postCond =
post). If the computed postcondition is not the same as the postcondition in the
subgoal, the built-in weakening lets the tactic leave the implication as a subgoal
rather than just failing.

This more-useful rule is proved from the basic inference rule and postcon-

dition weakening.

Tactics

WHILE TAC : tactic
SYNOPSIS

Separate a while loop without side effects into subgoals.

KEYWORDS

tactic, while, loop.

DESCRIPTION

This can only be used if the test expression has no side effects. If there
are side effects, use GENERAL _WHILE TAC instead. This tactic breaks a while
loop into an implication of the exit condition and partial correctness that the body
reestablishes the invariant.

Subgoals: There is always one to prove the body reestablishes the invari-

ant. There may also be one to prove the exit condition implies the postcondition.

FAILURE

preeval side effects: LUnary Prelnc (Vref (Var "a" O Int))
The loop test has a preevaluation side effect. Use GENERAL WHILE_TAC.

posteval side effects: Binary (LUnary PostInc(Vref(Var "a" 0 Int)))
Add (LUnary PostInc (Vref (Var "b" O Int))

The loop test has a postevaluation side effect. Use GENERAL WHILE_TAC.

181

EXAMPLE

Prove the following loop. It is part of a proof of a division-by-repeated-

subtraction algorithm.

F{r=xAq=0}while(y<=r){r=r—y; 9=q+1;}
{r<yAzx=r+(y*xq)}
Remaining subgoals:
(--‘Partial (x = r +y * q)
(CWhile (Binary (Lval (Vref (Var "y" 0 Int))) LEq
(Lval (Vref (Var "r" 0 Int))))
(Seq
(Simple (Assign (Vref (Var "r" 0 Int))
(Binary (Lval (Vref (Var "r" 0 Int)))
Sub (Lval (Vref (Var "y" 0 Int))))))
(Simple (Assign (Vref (Var "q" 0 Int))
(Binary (Lval (Vref (Var "q" O Int)))
Add (Const (CCint 1) Int))))))
(r<y/\N(x=1r+y*q))--)
- e (WHILE_TAC);
0K..
2 subgoals:
(--‘Partial ((x=r +y *q) /\y <=r1)
(Seq
(Simple (Assign (Vref (Var "r" 0 Int))
(Binary (Lval (Vref (Var "r" 0 Int)))
Sub (Lval (Vref (Var "y" 0 Int))))))
(Simple (Assign (Vref (Var "q" 0 Int))
(Binary (Lval (Vref (Var "q" O Int)))
Add (Comnst (CCint 1) Int))))))
(x=r+y*q)--)

(--“x=r+yx*xq) /\ "(y <= 1) ==>
r<y /\N(x=r+yx*xq)--)

182

SEE ALSO

GENERAL WHILE_TAC, PRE_STRENGTHEN_TAC.

GENERAL WHILE TAC: (term option -> term option -> tactic)

SYNOPSIS

Separate a while loop into subgoals for each piece.

KEYWORDS

tactic, while, loop.

DESCRIPTION

Given the precondition as the loop invariant, reduce a while loop to a
minimal set of subgoals needed to prove it.

The first “optional” operand is a test state condition. The second “optional”
operand is the posttest condition. If the test expression has preevaluation side
effects, a test state must be provided, for example, (SOME (--‘(b=a) / a < C+1
/ (c=C)‘--)). If the test has no pre side effects, pass NONE. Likewise if the test
has postevaluation side effects, a body condition must be given, for example, (SOME
(-=“(b=a) / a < C / (c=C)‘--)), otherwise pass NONE.

Note that the existing precondition is used as the loop invariant. A
PRE_STRENGTHEN _TAC may be needed to to get the precondition in the right
form. See the example below.

Subgoals: This leaves from one to four subgoals depending on what, if any,
side effects are in the loop test expression and whether the exit condition matches

the postcondition. The possible goals are

1. partial correctness of preevaluation effects,
2. the exit condition implies the postcondition,

3. partial correctness of postevaluation effects giving the body precondition,

and

4. partial correctness that the body reestablishes the invariant.

183

FAILURE

test has preeval side effects, so a

test state condition is required

The test expression has preevaluation side effects, but NONE was passed as the test
state (first operand). You must give a condition to be used after the preevaluation

side effects are applied and before the test is done.

test has posteval side effects, so a

body state condition is required

The test expression has postevaluation side effects, but NONE was passed as the
body condition (second operand). You must give a condition to be used after the

postevaluation side effects are applied and before the body is evaluated.

EXAMPLE

Prove a loop which has both pre- and postevaluation side effects in the test.

It copies c to a and b. The original code and conditions are these.

{c="c /\ ~c>0}
a=0;
b=0;
while(++a + b++ + 1 < 2 *c)

{a="c /\ b="c}

The first two statements can be proved with REPEAT FWD_SEQ_ASSIGN_TAC.

1 subgoal:
(--‘Partial ((b = a) /\ a < "c /\ (c = "c))
(CWhile
(Binary
(Binary
(Binary (LUnary PreInc (Vref (Var "a" 0 Int)))
Add

184

(LUnary PostInc (Vref (Var "b" 0 Int))))
Add (Const (CCint 1) Int))
Lt
(Binary (Const (CCint 2) Int)
Mul (Lval (Vref (Var "c" 0 Int)))))
EmptyStmt)
((a="c) /\ (b ="c))--)
- e (GENERAL_WHILE_TAC
(SOME (--‘(b+1=a) /\ a<"logc+l /\ (c="logc)‘--))
(SOME (--‘(b = a) /\ a < “logc /\ (c="logc)‘--)));
4 subgoals:
(--‘Partial ((b = a) /\ a < "¢ /\ (c = “c)) EmptyStmt
(b=2a) /\Na<c/\ (c="c))--)

(--‘Partial (((b+ 1 =2a) /\a< "c+1/\ (c="c)) /\
(a+b) +1<2x%c)
(Simple (LUnary PostInc (Vref (Var "b" 0 Int))))
(b=2a) /\Na<c/\ (c="c))--)

(--‘Partial
((b+1=2a) /Na<"c+1/\ (c="c)) /\
“((a+Db) +1<2x%¢c))
(Simple (LUnary PostInc (Vref (Var "b" 0 Int))))
((a="c) /\ (b ="c))--)

(--‘Partial ((b=12a) /\ a < “c /\ (c = "c))
(Simple (LUnary PreInc (Vref (Var "a" 0 Int))))
(b+1=2a)/\Na<"c+1/\ (c="c))--)

As a side note, the first three goals are proved with LUNARY TAC, and the final
goal is proved with SKIP_TAC.

185

USES

If you are not sure what conditions to use, try the underspecified GENERAL _
WHILE_TAC (SOME (--‘testState:bool‘--)) (SOME
(--‘bodyCond:bool ‘--)). This will show the subgoals which will result. You can
examine where testState and bodyCond appear to decide what they should be,

then backup the proof and insert the actual conditions.

SEE ALSO

PRE_STRENGTHEN_TAC, WHILE_TAC.

A.6 Blocks and Functions
A.6.1 Blocks and Local Variables

Blocks define scope. In C they may also introduce local variables. Since we
had no code with local variables (except function bodies), we use this simplistic
(and wrong!) inference rule even though it does not handle local variables. A

correct rule can be found in [21].

F {pre} stm {post}
F {pre} (Block 11v stm) {post}

Tactics

BLOCK_TAC : tactic
SYNOPSIS

Reduce a Block goal.

KEYWORDS

tactic, block, local variable.

DESCRIPTION

Strip the Block construct ignoring any local variables.

Subgoals: The body of the block.

186

FAILURE

Always succeeds if the statement is a Block.

EXAMPLE

1 subgoal:
(--‘Partial ((p = “p) /\ (g = "g))
(Block []
(Simple
(Assign (Vref (Var "g" 0 Int))
(Binary (Lval (Vref (Var "p" 0 Int))) Add
(Const (CCint 1) Imnt)))))

(g ="p+ 1))

- e (BLOCK_TAC);

0K..
1 subgoal:
(--‘Partial ((p = “p) /\ (g = "g))
(Simple
(Assign (Vref (Var "g" 0 Int))
(Binary (Lval (Vref (Var "p" O Int))) Add
(Const (CCint 1) Int))))

(g ="p+ 1))

SEE ALSO

CALL_TAC, IFTHEN_TAC, WHILE_TAC.

A.6.2 Function Calls

Functions or procedures are a powerful means of structuring code. For rea-
sonable verification, we must have a means of proving the correctness of a function
call based on some kind of pre-proved theorem for the function being called. The
theorem must include necessary preconditions and guaranteed postconditions in

terms of the formal parameters and global variables.

187

The inference rule for a function call must do some kind of renaming, similar
to assignment, since formal parameters are bound to values. However function calls
are semantically complex: parameters may be bound to arbitrary expressions, and
the function may access or change the global state. Function calls rules have been
proposed, but many are too limited or have later been shown to be incorrect. We
adapt our function call inference rule from Homeier [32, p. 107].

We specialized the rule to remove provisions for call-by-name parameters

and to specialize for functions with variable numbers of arguments (varargs).

= WF _fnp {pre} (Func name formals globls b) {post}
F WF_c (Simple (Call name ps)) | vals = spec_varargs formals ps
| vals’ = variants vals (APPEND (FV_a gpost) globls)
'y = APPEND vals globls F x = APPEND vals globls
F x0 = logicals x F y0 = logicals y
F %0’ = variants x0 (FV_a gpost)
I specpost = post <1 (APPEND vals’ x0’) (APPEND vals y0)
- postimpq = (specpost = qpost) <t newC_Result genrC_Result

- {(prefals’ A (Vx.postimpq)Xo)ii3errps}

(Simple (Call name ps)) {qpost}

The operator < substitutes items from the first list with items from the

second list. The Vx.... binds all the variables in x to prevent variable capture.

Tactics

CALL_TAC : (thm -> tactic)
SYNOPSIS

Prove a function call from a WF¢np theorem.

KEYWORDS

tactic, function, call.

188

DESCRIPTION

Prove a function call given a well-formedness theorem for the function. This
tactic strengthens the precondition to match the computed precondition.

Subgoals: This leaves an implication from the strengthening.

FAILURE

Exception raised at partialTactics.GENERAL_CALL_TAC:
Call var and WF_fnp Func var differ

The function being called and the well-formedness theorem function are different.

The types may be different.
WF_fnp post has multiple C_Result’s

The tactic doesn’t know which C_Result variable to specialize as the function’s

return value.

EXAMPLE

Here is a well-formedness theorem for a function which sets a global variable,

g, to the parameter, plus one.

|- WF_fnp T
(Func (Var "f" 0 Void) [Var "p" O Int] [Var "g" 0 Int]
(SOMEBody (Block []
(Simple
(Assign (Vref (Var "g" 0 Int))
(Binary (Lval (Vref (Var "p" O Int))) Add
(Const (CCint 1) Int)))))))

(g ="p+ 1)

The following proves that after the call, g is one more than the value of the actual

parameter, or - {T} f(k); {g=%k+ 1}.

189

1 subgoal:
(--‘Partial T
(Simple
(Call (Var "f" 0 Void)
(PL (Lval (Vref (Var "k" 0 Int))) PLnull)))
(g =k + 1))

- e (CALL_TAC WF_fnp_f);
1 subgoal:

(-=‘T==>T/\ (!p’1’g. (g=p+ 1) ==>(g=p + 1))--)

This can be proved with ASM_REWRITE_TAC.

SEE ALSO

GENERAL _CALL_TAC, SEP_CALL_TAC, WF_fnp_TAC.

GENERAL CALL TAC : (thm -> string -> tactic)
SYNOPSIS

A general form of CALL_TAC.

KEYWORDS

tactic, function, call.

DESCRIPTION

This allows one to give the new name of the function result variable.
Subgoals: This tactic leaves an implication from the precondition strength-

ening.

FAILURE

See CALL_TAC.

190

EXAMPLE

See CALL_TAC.

USES

This is only used in writing other tactics.

SEE ALSO

CALL_TAC, SEP_CALL_TAC, WF_fnp_TAC.

SEP_CALL_TAC : (term -> thm -> tactic)
SYNOPSIS

Separate and prove a function call.

KEYWORDS

tactic, call, function, side effect.

DESCRIPTION

Separate a function call as a preevaluation side effect and prove the call
with the WF¢np theorem. The term operand is the intermediate condition after the
function call is evaluated and before the simplified expression.

Subgoals: The first subgoal is an implication of the weakest precondition
by the original precondition. The second subgoal is the expression, with the call

replaced by a new variable, is left.

FAILURE

See PRE_SIDE_EFFECT_TAC, CALL_TAC, and SEQUENCE_TAC.

EXAMPLE

The function £() sets the global variable gv to six and returns four. Here

1s 1ts well-formedness axiom.

191

|- WF_fnp T (Func (Var "f" 0 Int) [] [Var "gv" O Int] NOBody)
((C_Result = 4) /\ (gv = 6))

We use this to prove F {T} a=£(); {(a=4)A(gv=26)}.

a subgoal:
(--‘Partial T
(Simple
(Assign (Vref (Var "a" 0 Int))
(Call (Var "f" 0 Int) PLnull)))
((a=4) /\ (gv=26))"--)

- e (SEP_CALL_TAC (--‘(C_Result=4) /\ (gv=6)‘--) f_thm);

2 subgoals:
(--‘Partial ((C_Resultll = 4) /\ (gv = 6))
(Simple
(Assign (Vref (Var "a" 0 Int))
(Lval (Vref (Var "C_Resultl1l" 0 Int)))))
((a=4) /\ (gv=2¢6))--)

(-=‘T ==>

T /\

(1gv.
(C_Resultll = 4) /\ (gv = 6) ==>
(C_Resulti1l = 4) /\ (gv = 6))‘--)

These can be solved with STRIP_ THEN REWRITE_TAC and ASSIGN_TAC re-
spectively. There is another, similar example in WF _fnp_TAC.

SEE ALSO

CALL_TAC, PRE_SIDE EFFECT_TAC, SEQUENCE_TAC, WF fnp_TAC.

192

A.6.3 Verifying C Functions

The highest level of C code which we can prove at once is the function.
We have no rules for reasoning about files, which may have static variables and
functions. The aim at this level is to specify necessary preconditions, a function
declaration with formal parameters and the body, guaranteed postconditions, and
prove a theorem about calls to that function.

The first step is to translate the source code into an abstract syntax tree.
See Sect. A.1 for details. Add a list of global variables accessed, that is, either
used or potentially changed. Choose pre- and postconditions, and set a WF¢np goal.
First use WF _fnp_TAC to split the goal into a proof of the syntactic correctness
of the declaration and the proof of the body, then use WF_fn_syn TAC to prove
syntactic correctness. The proof of the body uses the preceding tactics to prove

code correctness.

A.6.4 Function Correctness

We prove function correctness by proving that the function is declared prop-
erly, or has syntax correctness, and that the body code has partial correctness. We
use Homeier’s definition of function correctness: WFsnp. The subscript “np” means
“function, partial correctness.” The operator = expresses the initial values of the
formal parameters and global variables, or the conjunction of pairwise equivalence
of two lists. The term z = y means 2; = y1 A%y = Y A ...Z, = y,. Here is the
inference rule to establish the partial correctness of a function declaration from
syntactic correctness and partial correctness of the body (with globals and formals

“Initialized”).

x = APPEND formals globls F x0 = logicals x
I WFtn_syntax pre (Func name formals globls (SOMEBody body)) post
F{(x = x0) A pre} body {post}
I WFenp pre (Func name formals globls (SOMEBody body)) post

193

Tactic

WF_fnp TAC : tactic

SYNOPSIS

Reduce the goal of function partial correctness.

KEYWORDS

tactic, function.

DESCRIPTION

Prove the correctness of a function call from syntactic correctness, or well-
formedness, of the declaration and from partial correctness of the body. The body
partial correctness has formal parameters and global variables equated to logical
variables representing initial values.

See Sect. 6.4.3, page 79, “A Guidebook to Formalizing System and Library
Calls,” for details on specifying WF¢np theorems.

Subgoals: The first subgoal is syntac correctness or WFen syntax since it is

easiest to prove. The second subgoal is the partial correctness of the body.

FAILURE

Always succeeds if the goal is WF _fnp.

EXAMPLE

This is an extensive example of the complete proof of a simple function to
illustrate the different aspects of WF _fnp TAC as well as WF fn_syn TAC.

We begin with a function which will be called. The function, const1(),
always returns 1 and sets a global variable, a_global, to 6. Here is its partial

correctness axiom.

|- WF_fnp T
(Func (Var "const1" 0 Int) [] [Var "a_global" 0 Int] NOBody)
((C_Result = 1) /\ (a_global = 6))

194

We will prove the following goal: a function, £(), sets another global vari-

able, b_global to its parameter, p, plus the value of const1().
- WFenp T (£(p){b_global=p+consti();} (b_global="p+1)

We begin with the above goal, then reduce function partial correctness
(WF_fnp_TAC), and prove syntactic correctness (WF _fn_syn TAC). Notice that
since const1() references a_global and f£() calls const1(), £() must list a_
global, too, even though it is never explicitly referenced. Notice also in the subgoal
to prove correctness of the body that the formals and globals are bound to logical
variables representing initial values. Since the proof of syntactic correctness may
take several seconds and to help the user diagnosis proof errors, WF _fn_syn TAC

reports as it works on each of the major hypotheses.

Initial goal:
(-=‘WF_fnp T
unc ar ol ar nt
(F (v " Q0 Void) [V "p" 0 I]
ar _globa nt; Var "a_globa nt
[v "b_global" 0 I Vv "a_global" 0 I]
(SOMEBody (Block []
imple ssign re ar _globa nt
(Si pl (A ig (Vref (V "b_global" 0 I)
inar va re ar nt
(Bi v (Lval (Vref (V "p" 0 I))) Add
a ar '"const nt nu
(Call (Var " 1" 0 Int) PLnull)))))))
(b_global = "p + 1)‘--)

- e(WF_fnp_TAC);

2 subgoals:
(--‘Partial ((p = "p) /\ (b_global = "b_global) /\
(a_global = "a_global) /\ T)
(Block []
(Simple (Assign (Vref (Var "b_global" 0 Int))
(Binary (Lval (Vref (Var "p" O Int))) Add
(Call (Var "constl" 0 Int) PLnull)))))
(b_global = "p + 1)‘--)

195

(--‘WF_fn_syntax T

(Func (Var "f" 0 Void) [Var "p" 0 Int]

[Var "b_global" 0 Int; Var "a_global" O Int]

(SOMEBody (Block []
(Simple (Assign (Vref (Var "b_global' 0 Int))
(Binary (Lval (Vref (Var "p" 0 Int))) Add
(Call (Var "constl" 0 Int) PLnull)))))))

(b_global = "p + 1)‘--)

- e (WF_fn_syn_TAC [WF_fnp_constl]);

(trying to prove IS_SUBSET (GV_c body) globls ...)
(trying to prove IS_SUBSET (FV_c body) x ...)
(trying to prove IS_SUBSET_TYCONF (FV_a pre) x ...)
(trying to prove IS_SUBSET_TYCONF (FV_a post) (APPEND x x0)
Goal proved.
|- WF_fn_syntax T
(Func (Var "f" 0 Void) [Var "p" 0 Int]
[Var "b_global" O Int; Var "a_global" O Int]
(SOMEBody
(Block []
(Simple
(Assign (Vref (Var "b_global" 0 Int))
(Binary (Lval (Vref (Var "p" 0 Int))) Add
(Call (Var "constl" O Int) PLnull)))))))
(b_global = "p + 1)

Remaining subgoals:

(--‘Partial
((p = "p) /\ (b_global = "b_global) /\
(a_global = "a_global) /\ T)
(Block []

196

(Simple (Assign (Vref (Var "b_global" 0 Int))
(Binary (Lval (Vref (Var "p" O Int))) Add
(Call (Var "comstl" 0 Int) PLnull)))))
(b_global = "p + 1)‘--)

We now use BLOCK_TAC to reduce the block and SEP_CALL_TAC to
separate the call and introduce an intermediate condition. Notice that we only need
to “carry” the initial value of one variable, the parameter p and the result of the
function call. SEP_CALL_TAC leaves an implication from the original precondition
to the precondition computed from the function call. STRIP_ THEN REWRITE_
TAC proves the implication, and ASSIGN_TAC finishes the proof.

- e (BLOCK_TAC);

1 subgoal:
(--‘Partial

((p = "p) /\ (b_global = "b_global) /\

(a_global = "a_global) /\ T)

(Simple (Assign (Vref (Var "b_global" 0 Int))
(Binary (Lval (Vref (Var "p" 0 Int))) Add

(Call (Var "constl" 0 Int) PLnull))))
(b_global = "p + 1)‘--)

- e(SEP_CALL_TAC (--‘(C_Result = 1) /\ (p = "p)‘--) WF_fnp_constl);

2 subgoals:
(--‘Partial ((C_Resultl = 1) /\ (p = "p))
(Simple
(Assign (Vref (Var "b_global" 0 Int))
(Binary (Lval (Vref (Var "p" O Int))) Add
(Lval (Vref (Var "C_Resultl" 0 Int))))))
(b_global = "p + 1)‘--)

(-=“(p = "p) /\ (b_global = "b_global) /\

197

(a_global = "a_global) /\ T ==

T /\ ('a_global.
(C_Result2 = 1) /\ (a_global = 6) ==>
(C_Result2 = 1) /\ (p = “p))‘--)

- e (STRIP_THEN_REWRITE_TAC);

Goal proved.
(-=“(p = "p) /\ (b_global = "b_global) /\
(a_global = "a_global) /\ T ==

T /\ ('a_global.
(C_Result2 = 1) /\ (a_global = 6) ==>
(C_Result2 = 1) /\ (p = “p))‘--)

Remaining subgoals:
(--‘Partial ((C_Resultl = 1) /\ (p = "p))
(Simple
(Assign (Vref (Var "b_global" O Int))
(Binary (Lval (Vref (Var "p" O Int))) Add
(Lval (Vref (Var "C_Resultl" 0 Int))))))

(b_global = "p + 1) ‘--)
- e (ASSIGN_TAC);

Initial goal proved.
|- WF_fnp T
(Func (Var "f" 0 Void) [Var "p" 0 Int]
[Var "b_global" O Int; Var "a_global" O Int]
(SOMEBody (Block []
(Simple (Assign (Vref (Var "b_global" 0 Int))

(Binary (Lval (Vref (Var "p" 0 Int))) Add
(Call (Var "consti" 0 Int) PLnull)))))))

(b_global = "p + 1)

198

While preparing this example, I initially forgot to carry through the initial value of
p. After ASSIGN _TAC left an implication which needed it, I backed up, expanded
the intermediate condition in the SEP_CALL_TAC and finished the proof.

SEE ALSO

CALL_TAC, SEP_CALL_TAC, WF_fn_syn_TAC.

A.6.5 Function Syntactic Correctness

To prove function correctness, we must check several syntactic correctness
or well-formedness conditions. We adapt Homeier’'s WF proc_syntax [32, p. 259]
for our well-formedness condition: WFn syntax. The subscript “fn_syntax” means
“function, syntactic correctness.”

Here are the conditions. The operator tsge means “subset, allowing for
type conformance.” We approximate C’s implicit type casting and automatic type

promotion by allowing matching as long as types conform.

1. None of the formal parameters or global variables are logicals (WFxs x).
2. No variable occurs more than once in the formals or globals (DL x).
3. All globals of functions called are listed in the globals (GV; body) C globls.

4. All free variables (i.e., not local variables) in the body are formals or globals

(FV¢ body) C x.

5. All free variables in the precondition are formals or globals, given type con-

type
formance (FV, pre) C x.

6. All free variables in the postcondition are formals or globals or logical versions

type
of them (the x0), given type conformance (FV, post) C (APPEND x x0).

Fx = APPEND formals globls F x0 = logicals x

FWFee x FDL x
F (GV. body) C globls - (FVe body) C x
- (FVa pre) C x - (FV, post) C (APPEND x x0)

I WFn_syntax pre (Func name formals globls (SOMEBody body)) post

199

Tactic

WF_fn syn TAC : (thm list -> tactic)

SYNOPSIS

Prove the syntactic correctness of a function.

KEYWORDS

tactic, function.

DESCRIPTION

Prove various “lemmas” about the syntactic correctness of a function, such
as, all globals are declared and parameters have unique names. The operand is
a list of WF¢np theorems, one for each function called in the body. With these
lemmas, the goal is proved.

See Sect. 6.4.3, page 79, “A Guidebook to Formalizing System and Library
Calls,” for details on specifying WF¢np theorems.

Subgoals: None.

FAILURE

When WF _fn_syn _TAC fails, it prints a lot of text about what it is working
on and how far it could get to help figure out what the problem is and how to

correct it. These error messages leave out extraneous parts.

(trying to prove IS_SUBSET (GV_c body) globls ...)
No WF_fnp theorem for comstl
Could not prove IS_SUBSET (GV_c body) globls

A function is called, in this case const1(), but no matching WF¢n, theorem is
given. Kither the theorem was missed or the return value of the theorem function
is different from the return value declared in the body. Supply the missing theorem

or correct the declaration.

200

(trying to prove IS_SUBSET (GV_c body) globls ...)
Could not prove IS_SUBSET (GV_c body) globls
>>> These are missing or don’t have exactly the same type

[Var "a_global" O Int]

A called function references a global variable, in this case a_global, but it is not
listed in the globals for this function. Either it is missing or the type is different.

Add the missing variable or correct the type declaration.

(trying to prove IS_SUBSET (GV_c body) globls ...)
(trying to prove IS_SUBSET (FV_c body) x ...)

Could not prove IS_SUBSET (FV_c body) x

>>> These are missing or don’t have exactly the same type

[Var "free" 0 Int]

A free variable in the body, named free in this instance, is not declared as a global
or a parameter. If it is a global, add it to the list of referenced globals or correct

the type. If it is a parameter, correct the name or type.

(trying to prove IS_SUBSET (GV_c body) globls ...)
(trying to prove IS_SUBSET (FV_c body) x ...)

(trying to prove IS_SUBSET_TYCONF (FV_a pre) x ...)

Could not prove IS_SUBSET_TYCONF (FV_a pre) x

>>> These are missing or don’t have exactly the same type

[Var "free" 0 Int]

A free variable in the precondition, named free here, is not declared as a parameter
or a global. Add it to the globals, correct the name or type, or make it a program
variable (no leading caret) instead of a logical variable. Logical variables are not

allowed in the precondition.

(trying to prove IS_SUBSET (GV_c body) globls ...)

(trying to prove IS_SUBSET (FV_c body) x ...)

(trying to prove IS_SUBSET_TYCONF (FV_a pre) x ...)

(trying to prove IS_SUBSET_TYCONF (FV_a post) (APPEND x x0) ...)

201

Could not prove IS_SUBSET_TYCONF (FV_a post) (APPEND x x0)
>>> These are missing or don’t have exactly the same type

[Var "free" 0 Int]

A free variable in the postcondition, named free here, is not declared as a pa-
rameter or a global. Add it to the globals or correct the name or type. Logical
versions of parameters or globals, representing their initial values, are allowed in

the postcondition.

EXAMPLE

See the example for WF _fnp TAC.

SEE ALSO

WF_fnp_TAC.

A.7 Generally Useful Tactics

This section documents some general tactics which may be broadly useful.
They are divided into three groups in corresponding sections: Sect. A.7.1 tactics
to simplify or solve goals, Sect. A.7.2 tactics to undischarge assumptions, and
Sec. A.7.3 tactics for arithmetic. Any or all of these may be subsumed by the
improved tactics in newer HOL’s such as MESON_TAC.

A.7.1 Tactics to Simplify or Solve Goals

Proofs in axiomatic semantics tend to carry a conjunction of a lot of condi-
tions. Inference rules often involve one extended condition implying another where
most of the conditions can be trivially satisfied. So there are often goals which

look something like a AbAcA D =aANbAcAE.

STRIP_THEN REWRITE_TAC : tactic
SYNOPSIS

Strip quantifiers and implications, then rewrite with assumptions.

202

KEYWORDS

tactic, strip, rewrite.

DESCRIPTION

This does REPEAT STRIP_TAC THEN ASM REWRITE_TAC [| which
usually greatly simplifies the goal and sometimes solves it altogether. Even when
preliminary tactics should be executed before it, say expanding a definition, it can
be a useful diagnostic aid by showing what needs to be proved and under what
conditions or assumptions.

Subgoals: May solve the goal or leave any number of subgoals.

FAILURE

The tactic never fails. Since the tactic uses general rewriting, it may cause

an infinite loop, but this has never happened in practice.

EXAMPLE

The following goal is the implication which establishes the precondition of

a call to printf ().

1 subgoal:
(--‘'prev.

nonConfidentialS (printfSpec "Us %s %s " vargs) ==

((inode = SYS_stdout) ==

nonConfidential (getFile SYS_FileSystem inode)) ==

C_Resultl > 0 ==

(" (inode = SYS_stdout) \/

((inode = SYS_stdout) ==> nonConfidential prev) /\
(appendFile (printfSpec "¥s %s %s " vargs) prev =
getFile SYS_FileSystem’ inode)) /\

((inode = SYS_stdout) \/

((inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ inode))) ==

203

(inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)

- e (STRIP_THEN_REWRITE_TAC);

4 subgoals:
(--‘nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)

(--‘nonConfidentialS (printfSpec "¥%s %s %s
(--‘(inode = SYS_stdout) ==

nonConfidential (getFile SYS_FileSystem inode) ‘--)
(--‘C_Resultl > 0°--)

vargs) ‘--)

(--‘(inode = SYS_stdout) ==> nonConfidential prev‘--)

(--‘appendFile (printfSpec "¥%s %s %s " vargs) prev =
getFile SYS_FileSystem’ inode‘--)

(--‘(inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ inode) ‘--)

(--‘inode = SYS_stdout‘--)

(--‘nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)
(--‘nonConfidentialS (printfSpec "Us %s %s " vargs)‘--)
(--‘(inode = SYS_stdout) ==

nonConfidential (getFile SYS_FileSystem inode) ‘--)
(--‘C_Resultl > 0°--)
(--‘(inode = SYS_stdout) ==> nonConfidential prev‘--)

(--‘appendFile (printfSpec "¥%s %s %s " vargs) prev =
getFile SYS_FileSystem’ inode‘--)

(--‘inode = SYS_stdout‘--)

(--‘nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)

(--‘nonConfidentialS (printfSpec "¥%s %s %s vargs) ‘--)

204

(--‘(inode = SYS_stdout) ==

nonConfidential (getFile SYS_FileSystem inode) ‘--)
(--‘C_Resultl > 0°--)
(--‘"(inode = SYS_stdout) ‘--)
(--‘(inode = SYS_stdout) ==

nonConfidential (getFile SYS_FileSystem’ inode) ‘--)
(--‘inode = SYS_stdout‘--)

(--‘nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)

(--‘nonConfidentialS (printfSpec "¥%s %s %s

(--‘(inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem inode) ‘--)

(--‘C_Resultl > 0°--)

(--‘"(inode = SYS_stdout) ‘--)

(--‘inode = SYS_stdout‘--)

vargs) ‘--)

SEE ALSO

REPEAT (HOL), STRIP_TAC (HOL), ASM_REWRITE TAC (HOL).

LIFT QUANT TAC : tactic
SYNOPSIS

Move quantifiers outward as much as possible.

KEYWORDS

tactic, quantifier, existential, universal.

DESCRIPTION

Move all universal and existential quantifiers as far outward as possible.
This way we can deal with them all at once rather than encountering them at

different, odd times in the proof. It is defined as follows.

205

val LIFT_QUANT_TAC =

CONV_TAC (REDEPTH_CONV (
AND_EXISTS_CONV ORELSEC AND_FORALL_CONV ORELSEC
OR_EXISTS_CONV ORELSEC OR_FORALL_CONV ORELSEC
LEFT_AND_EXISTS_CONV ORELSEC LEFT_AND_FORALL_CONV ORELSEC
LEFT_IMP_EXISTS_CONV ORELSEC LEFT_IMP_FORALL_CONV ORELSEC
LEFT_OR_EXISTS_CONV ORELSEC LEFT_OR_FORALL_CONV ORELSEC
RIGHT_AND_EXISTS_CONV ORELSEC RIGHT_AND_FORALL_CONV ORELSEC
RIGHT_IMP_EXISTS_CONV ORELSEC RIGHT_IMP_FORALL_CONV ORELSEC
RIGHT_OR_EXISTS_CONV ORELSEC RIGHT_OR_FORALL_CONV));

Subgoals: It leaves the goal, which may have been changed.

FAILURE

Never fails.

EXAMPLE

See the example in UNDISCH_ALL _TAC. We use UNDISCH_ALL_TAC
to undischarge all assumptions, then we use this tactic to sweep all quantifiers

outward at once in preparation for unifying.

USES

This may be used after UNDISCH_ALL_TAC to simplify and unify all the
assumption at once.
SEE ALSO

UNDISCH ALL TAC and many HOL conversions such as AND _EXISTS _CONV,
OR_FORALL CONV, LEFT_AND EXISTS CONV, RIGHT_IMP FORALL _CONV.

ESTAB TAC : (term -> tactic)
SYNOPSIS

Establish the term from the assumptions.

206

KEYWORDS

tactic, assumption.

DESCRIPTION

This tries to add the term to the assumption list using various of the as-
sumptions and built-in tactics.

ESTAB_TAC tries each assumption by itself, then pairs of assumptions,
then triples of assumptions with ARITH CONV and TAUT_CONYV to establish
the term. If it does, it adds it to the assumption list with ASSUME _TAC. The
heart of this mechanism is also used by INCONSIST _TAC. It is not algorithmically
elegant, but it saves the user time.

Subgoals: None.

FAILURE

Fails if the term cannot be added.

EXAMPLE

Suppose you have the following goal.

(== >= arSz‘--)

(-==‘In. n < j ==> max >= f n‘--)
(--‘max = 0°--)

(--‘arSz > 0--)

(--¢"fnn ar = arSz‘--)

(--¢j <= arSz‘--)

Some inspection shows that we could establish j > 0 by from j >= arSz, arSz >

0, and j <= arSz. The following tactic solves the above goal.

e (ESTAB_TAC (--‘j > 0‘--) THEN ASM_REWRITE_TAC []);

207

USES

Rather than picking through the assumption list or working out a long
mathematical proof, this may be used to establish useful assumptions to rewrite
or solve the goal.

SEE ALSO

INCONSIST_TAC, SOLVE_TAC.

INCONSIST TAC : tactic
SYNOPSIS

Try to solve the goal by finding an inconsistency.

KEYWORDS

tactic, assumption.

DESCRIPTION

This tactic tries to solve a goal by proving an inconsistency in the assump-
tions.

The implementation is to try to establish F (false) (see ESTAB_TAC for
details), then solve the goal with CONTRA _TAC. If that doesn’t work, it enriches
the assumption list with equalities to find an inconsistency with an inequality.

Subgoals: None.

FAILURE

Fails if it cannot solve the goal.

EXAMPLE

(-='n < j¢=-)
(-—0 <= n‘--)

208

(=3 = 0%-=-)

Inspection suggests a proof by contradiction using the assumptions n < j and j

= 0. The following tactic solves this goal.

e (INCONSIST_TAC)

ACKNOWLEDGEMENT

The idea and implementation of solving a goal by enriching the assumption

list with equalities to find an inconsistency with an inequality is due to Robert

Beers (beers@lal.cs.byu.edu).

SEE ALSO

ESTAB_TAC, SOLVE.TAC, CONTRA.TAC (HOL).

SOLVE_TAC : tactic
SYNOPSIS

Try to solve a goal by several different general approaches.

KEYWORDS

tactic.

DESCRIPTION

This is a general purpose tactic for solving goals, especially those which
arise in software proofs with axiomatic semantics. It tries a series of tactics to
solve the goal. It may take a few seconds, but these days user time is often more

valuable than computer time. It tries the following ways.
1. Establish the goal from the assumptions.
2. Solve by proving an inconsistency in the assumptions.

3. If the goal is a = b, establish equalities which unify a and b.

209

4. If an assumption and the goal are b and a ==> b’, establish a and the unifiers

for b and b’.

This makes heavy use of ESTAB_TAC and INCONSIST_TAC to try various

approaches.
Subgoals: None.
FAILURE

Fails if it cannot solve the goal.

EXAMPLE

SOLVE_TAC solves the following goals directly and automatically.

(-=P d*--)

(-=“at--)
(--fa ==>P c‘--)
(= = d--)

(--‘nonConfidential (getFile SYS_FileSystem SYS_stdout) ‘--)

(--‘inode = SYS_stdout‘--)
(--‘linode. (inode = SYS_stdout) ==>
nonConfidential (getFile SYS_FileSystem inode) ‘--)
(--‘a ==> b‘--)
SEE ALSO

ESTAB_TAC, INCONSIST_TAC.

A.7.2 Tactics to Handle Assumptions

FILTER_UNDISCH_TAC : ((thm -> bool) -> tactic)
SYNOPSIS

Undischarge a selected assumption.

210

KEYWORDS

tactic, assumption, undischarge, filter.

DESCRIPTION

This tactic undischarges one of the assumptions which matches the filter
function. Using filter rather than selecting assumptions by order makes proofs
slightly less sensitive to change. A program to generate filter functions from an
assumption list is given in [6].

Subgoals: None.

FAILURE

uncaught exception Empty

No assumption matches the filter function.

EXAMPLE

This example comes from a lemma during the proof of information integrity

of logfile(). The filter function looks for a theorem which is a “for all” term.

1 subgoal:
(--‘preFSS inode (getFile SYS_FileSystem’ inode) ‘--)

(inode = inodeOf (deref “F)) \/
reFSS inode (getFile SYS_FileSystem’ inode) ‘--)
p g y

(--“~"(inode = inode0f (deref "F))‘--)

- e (FILTER_UNDISCH_TAC (fn t=>is_forall (concl t)));

1 subgoal:
(--¢“('inode.
(inode = inode0f (deref "F)) \/
preFSS inode (getFile SYS_FileSystem’ inode)) ==

211

preFSS inode (getFile SYS_FileSystem’ inode) ‘--)

(--‘"(inode = inode0f (deref "F)) ‘--)
This is solved by the following tactic.
e (LIFT_QUANT_TAC THEN EXISTS_TAC (--‘inode:num‘--) THEN
ASM_REWRITE_TAC [1);
SEE ALSO

UNDISCH.-ALL_TAC, UNDISCH.TAC (HOL).

UNDISCH ALL TAC : tactic
SYNOPSIS

Undischarge all assumptions.

KEYWORDS

tactic, assumption, undischarge.

DESCRIPTION

This undischarges all assumptions. It is often easier to use this then to
specify exactly which assumption or assumptions to undischarge.
Subgoals: The only subgoal is the original with all assumptions undis-

charged.

FAILURE

Always succeeds if the goal is the proper form.

EXAMPLE

This comes from the proof of confidentiality of logfile(). We are trying to
prove that the precondition (from the previous statement’s postcondition) implies
the function call computed precondition. It shows the use of LIFT_QUANT_TAC

afterward.

212

1 subgoal:
(--‘nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)

(--“"(inode0f (deref F) = SYS_stdout) ‘--)
(--‘linode.
(inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem inode) ‘--)
(--‘C_Resultl16 > 0¢--)
(--‘linode.
(" (inode = inodeO0f (deref F)) \/
(7prev.
((inode = SYS_stdout) ==> nonConfidential prev) /\
(appendFile (printfSpec "¥%s %s %s %s %s %d %d " vargs)
prev = getFile SYS_FileSystem’ inode))) /\
((inode = inodeOf (deref F)) \/
((inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ inode))) ‘--)
(--‘inode = SYS_stdout‘--)

- e (UNDISCH_ALL_TAC);

1 subgoal:
(--(F = “F) ==> "(inodelf (deref F) = SYS_stdout) ==
('inode. (inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem inode)) ==
C_Result9 > 0 ==
(linode.
(" (inode = inodeOf (deref F)) \/
(7prev.
((inode = SYS_stdout) ==> nonConfidential prev) /\
(appendFile (printfSpec "Us %s %s %s %s %d %d " vargs)
prev = getFile SYS_FileSystem’ inode))) /\

213

((inode = inode0f (deref F)) \/
((inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ inode)))) ==
(inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)

- e (LIFT_QUANT_TAC);

1 subgoal:
(--‘?inode’ inode’’.
lprev. (F = "F) ==
~“(inode0f (deref F) = SYS_stdout) ==
((inode’ = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem inode’)) ==
C_Result9 > 0 ==
(" (inode’’ inode0f (deref F)) \/
((inode?’’ SYS_stdout) ==> nonConfidential prev) /\

(appendFile (printfSpec "¥%s %s %s %s %s %d %d " vargs)
prev = getFile SYS_FileSystem’ inode’’)) /\
((inode’’ = inodeOf (deref F)) \/
((inode’’ = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ inode’’))) ==
(inode = SYS_stdout) ==
nonConfidential (getFile SYS_FileSystem’ SYS_stdout) ‘--)

This can be solved with the following tactic

REPEAT (EXISTS_TAC (--‘inode:num‘--)) THEN
STRIP_THEN_REWRITE_TAC THEN SOLVE_TAC

SEE ALSO

FILTER UNDISCH.TAC, LIFT_QUANT_TAC, UNDISCH.TAC (HOL)

A.7.3 Arithmetic Tactics

214

ARITH TAC : tactic
SYNOPSIS

Solve arithmetic goals.

KEYWORDS

tactic, arithmetic.

DESCRIPTION

Apply ARITH_ CONV as a tactic. It is simply the following.
fun ARITH_TAC = CONV_TAC ARITH_CONV;

Subgoals: None.

FAILURE

Fails if it cannot solve the goal.

EXAMPLE

1 subgoal:
(--1 < 2--)

- e (ARITH_TAC);

Goal proved.

SEE ALSO

DEPTH_ARITH.TAC, ARITH.CONV (HOL).

DEPTH ARITH TAC : tactic
SYNOPSIS

Reduce arithmetic terms in the goal.

215

KEYWORDS

tactic, arithmetic.

DESCRIPTION

This goes through a goal proving and eliminating as many arithmetic terms

as possible. The implementation is

val DEPTH_ARITH_TAC = CONV_TAC (ONCE_DEPTH_CONV
(ARITH_CONV ORELSEC NEGATE_CONV ARITH_CONV));

It is inefficient since for every expression it tries to prove it is true (ARITH_CONV)
then, if that fails, that it is false (NEGATE_CONV ARITH_CONV).
Subgoals: At most the original goal simplified.

FAILURE

Always succeeds if the goal is the proper form.

EXAMPLE

This goal arose while proving that a piece of code finds the maximum in an
array. It says, “if the maximum is greater than zero, the maximum is some element
in the array” for the initial maximum, which is zero. DEPTH_ARITH _TAC reduces
0 > 0 to false. The goal may then be proved with REWRITE_TAC.

1 subgoal:
(--(0>0) => (?n. 0 =CA_IDX ar n) | T*--)

(--‘arSz = CA_SZ ar‘--)
(--‘arSz > 0°--)

- e (DEPTH_ARITH_TAC);

216

1 subgoal:
(--‘F => (?n. 0 = CA_IDX ar n) | T --)

(--‘arSz = CA_SZ ar‘--)
(--‘arSz > 0°--)

(=5 = 0°=-)

(--‘max = 0°--)

SEE ALSO

ARITH_TAC, TAUT_TAC.

217

APPENDIX B

OS AND LIBRARY CALL AXIOMS

We distinguish between the types of calls merely to structure our presen-
tation: the distinction is unimportant to the proof itself. Within each section we
group the calls by related functionality, for example, higher level I/O commands,
lower level I/O commands, time commands, etc. Input/output calls are those
which interact with the file system. Miscellaneous operating system calls interact
with the program execution environment, such as the process table or memory
allocation. Library functions are those which only operate on their parameters.

For each function, we give excerpts from the “man” page [28, 29| covering
the important points of the function declaration, behavior or intended use, return
values, and notes on errors. Immediately following is our WF_fnp or function call
axiom (see Inference Rule 6.2, page 62). Note that these are not complete descrip-
tions of the functions by any stretch of the imagination. They model enough of

the function for our proof.

B.1 Input/Output Calls
fopen

SYNOPSIS

FILE *fopen(const char *pathname, const char *type);

DESCRIPTION
fopen() opens the file named by pathname and returns a

pointer to it.

RETURN VALUE
Upon successful completion, a FILE pointer is returned.
Otherwise, NULL is returned and errno is set to indicate

the error.

218

|- WF_fnp (T)
(Func (Var "fopen" 0 (Ptr(Struct "FILE")))
[Var "pathname" O (Ptr Char); Var "type" 0 (Ptr Char)]
[Var "errno" 0 Int; Var "SYS_cwd" 0 (Ptr Char);
Var "SYS_root" 0 (Ptr Char)] NOBody)
((C_Result = NULL) /\ (?FOPEN_errno.errno=FOPEN_errno) \/
(?FOPEN_handlefn.C_Result =
FOPEN_handlefn (inodeNamed “pathname) “type))

fclose

SYNOPSIS
int fclose(FILE *stream);

DESCRIPTION
fclose() causes any buffered data for the named stream to be

written out, and the stream to be closed.

RETURN VALUE
Upon successful completion, fclose() returns 0. Otherwise,

EOF is returned and errno is set to indicate the error.

|- WF_fnp (T)
(Func (Var "fclose" 0 Int) [Var "stream" 0(Ptr(Struct "FILE"))]
[Var "errno" 0 Int] NOBody)
(T)

fprintf

This is one of the most complex axioms because details of its behavior are
critical to file integrity and confidentiality. The “varargs” (variable number of
arguments to a function) aspect is represented by giving the fixed components, in

this case stream and format, then a special variable, varargs. The postcondition

219

comes in three parts corresponding to the three outcomes we must distinguish.

1. The return value is some negative number if there was an error. In some

cases, errno is set, too.
2. The return value is zero if nothing happened; the file system is unchanged.

3. The return value is some positive number. The file system is unchanged

except that the file pointer passed has something appended.

SYNOPSIS

int fprintf(FILE *stream, const char *format, ...)

DESCRIPTION

fprintf() writes arguments to the named output stream.

RETURN VALUE
return the number of bytes written, or a negative value if an

output error was encountered. In some cases, errno is set.

|- WF_fnp (SoFS preFSS "SYS_FileSystem)
(Func (Var "fprintf" O Int)
(CONS (Var "stream" 0 (Ptr(Struct "FILE")))
(CONS (Var "format" O (Ptr Char)) varargs))
[Var "SYS_FileSystem" O
(Struct "(((permission,fscontents)unixFile,num)prod)CArray");
Var "errno" 0 Int] NOBody)
((?FPRINTF _error.C_Result = int_neg FPRINTF_error)
/\ (inSomeCases0f C_Result
(?FPRINTF _errno.errno=FPRINTF_errno))
/\ (SoFS preFSS "SYS_FileSystem) \/
(C_Result = 0) /\ (SoFS preFSS "SYS_FileSystem) \/
C_Result > 0
/\ (SoFS (\inode fcontents .

(inode = inodeO0f (deref “stream)) =>

220

(?7prev. preFSS inode prev /\
(appendFile
(printfSpec “format varargs)
prev = fcontents)) |

(preFSS inode fcontents)) "SYS_FileSystem))

There should be an additional precondition that stream is valid, or at least

not NULL, and is open for write or append.

printf

SYNOPSIS

int printf(const char *format, ...)

DESCRIPTION

printf() writes arguments to the standard output.

|- WF_fnp (SoFS preFSS "SYS_FileSystem)
(Func (Var "printf" O Int)
(coNs (Var "format" O (Ptr Char)) varargs)
[Var "SYS_FileSystem" O
(Struct "(((permission,fscontents)unixFile,num)prod)CArray");
Var "errno" 0 Int] NOBody)
((?PRINTF _error.C_Result = int_neg PRINTF_error)
/\ (inSomeCases0Of C_Result
(?PRINTF_errno.errno=PRINTF_errno))
/\ (SoFS preFSS "SYS_FileSystem) \/

(C_Result = 0) /\ (SoFS preFSS "SYS_FileSystem) \/
C_Result > 0

/\ (SoFS (\inode fcontents .
(inode = SYS_stdout) =>
(?prev. preFSS inode prev /\
(appendFile

(printfSpec “format varargs)

221

prev = fcontents)) |

(preFSS inode fcontents)) "SYS_FileSystem))

sscanf

This may change memory indicated by the pointers, but we can’t express

the “varargs” well enough.

SYNOPSIS

int sscanf(const char *s, const char *format, ...);

DESCRIPTION
sscanf () reads characters from s, interprets them according to

the format, and stores any results the pointers.

RETURN VALUE
If the input ends prematurely, EOF is returned. Otherwise,
sscanf() returns the number of successfully assigned input

items.

|- WF_fnp (T)
(Func (Var "sscanf" 0 Int)
(CONS (Var "s" 0 (Ptr Char))
(CONS (Var "format" O (Ptr Char)) varargs))
[] NOBody)
((C_Result = EOF) \/
(C_Result = sscanfSpecNum(“format)))

These are the lower level input/output functions.

open

SYNOPSIS

int open(const char *pathname, int oflag);

222

DESCRIPTION

open() opens the file named by pathname in the given mode.

RETURN VALUE
Upon successful completion, a file descriptor is returned.
Otherwise, -1 is returned and errno is set to indicate the

error.

|- WF_fnp (T)
(Func (Var "open" 0 Int)
[Var "pathname" O (Ptr Char); Var "oflag" 0 Int]
[Var "errno" 0 Int;
Var "SYS_cwd" 0 (Ptr Char); Var "SYS_root" 0 (Ptr Char)]
NOBody)
((C_Result = int_neg 1) /\ (70PEN_errno.errno=0PEN_errno) \/
(?0PEN_fildesfn.C_Result =
OPEN_fildesfn “pathname ~oflag ~SYS_cwd "SYS_root))

close

SYNOPSIS

int close(int fildes);

DESCRIPTION

close() closes the file descriptor.

RETURN VALUE
Upon successful completion, close() returns 0; otherwise, it

returns -1 and sets errno to indicate the error.
|- WF_fnp (T)

(Func (Var "close" 0 Int) [Var "fildes" 0 Int]
[Var "errno" 0 Int] NOBody)

223

((C_Result = int_neg 1) /\ (7CLOSE_errno.errno=CLOSE_errno) \/
(C_Result = 0))

read

The last clause in the postcondition says that if the read succeeded, the file

descriptor couldn’t have been -1.

SYNOPSIS

size_t read(int fildes, void *buf, size_t nbyte);

DESCRIPTION
read() tries to read nbyte bytes from the file descriptor into

buf.

RETURN VALUE
Upon successful completion, read() returns the number of bytes
actually read and placed in the buffer; this may be less than
nbyte. When an end-of-file is reached, a value of 0 is
returned. Otherwise, a -1 is returned and errno is set to

indicate the error.

|- WF_fnp (T)
(Func (Var "read" 0 Int)
[Var "fildes" 0 Int; Var "buf" 0 (Ptr Char);Var "nbyte" O Int]
[Var "errno" 0 Int] NOBody)
((C_Result int_neg 1) /\ (7READ_errno.errno=READ_errno) \/
(C_Result = 0) \/
“("fildes = int_neg 1) /\ (C_Result > 0) /\
(C_Result = readSpec("fildes, “buf, “nbyte)))

write

SYNOPSIS

ssize_t write(int fildes, const void *buf, size_t nbyte);

224

DESCRIPTION

write() tries to write nbyte bytes from buf into the file

descriptor.

RETURN VALUE
Upon successful completion, write() returns the number of
bytes actually written. Otherwise, -1 is returned and errno

is set to indicate the error.

|- WF_fnp (SoFS preFSS "SYS_FileSystem)
(Func (Var "write" 0 Int)
[Var "fildes" 0 Int; Var "buf" 0 (Ptr Char); Var "nbyte" 0 Int]
[Var "SYS_FileSystem" O
(Struct "(((permission,fscontents)unixFile,num)prod)CArray");
Var "errno" 0 Int] NOBody)
((C_Result = int_neg 1) /\ (?WRITE_errno.errno=WRITE_errno)
/\ (SoFS preFSS "SYS_FileSystem) \/
(?WRITE_res.(C_Result=WRITE_res) /\
WRITE res >= 0 /\ WRITE_res <= nbyte)
/\ (SoFS (\inode fcontents .
(inode = inodeOfFileDes ~fildes) =>
(?7prev. preFSS inode prev /\
(appendFile (writeSpec “buf “nbyte)
prev = fcontents)) |

(preFSS inode fcontents)) "SYS_FileSystem))

B.2 Miscellaneous Operating System Calls
chdir

SYNOPSIS
int chdir(const char *path);

225

DESCRIPTION
chdir() causes a directory pointed to by path to become the

current working directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to

indicate the error.

ERRORS
chdir() fails and the current working directory remains

unchanged if one or more of the following are true .

|- WF_fnp (T)
(Func (Var "chdir" 0 Int) [Var "path" 0 (Ptr Char)]
[Var "errno" 0 Int; Var "SYS_cwd" 0 (Ptr Char)] NOBody)
((C_Result 0) /\ (SYS_cwd="path) \/
(C_Result = int_neg 1) /\ (SYS_cwd="SYS_cwd)
/\ (?CHDIR_errno.errno=CHDIR_errmno))

chroot

SYNOPSIS

int chroot(const char *path);

DESCRIPTION
chroot() causes the named directory to become the root

directory.

The effective user ID must be a user having appropriate

privileges.

RETURN VALUE

226

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to

indicate the error.

ERRORS
chroot() fails and the root directory remains unchanged if

one or more of the following are true .

|- WF_fnp (T)
(Func (Var "chroot" 0 Int) [Var "path" O (Ptr Char)]
[Var "errno" 0 Int; Var "SYS_cwd" 0 (Ptr Char);
Var "SYS_root" 0 (Ptr Char); Var "SYS_euid" O Int] NOBody)
(((C_Result = 0) /\
(SYS_root=resolvePath "“SYS_root "“SYS_cwd “path)
\/ (C_Result = int_neg 1) /\ (SYS_root="SYS_root)
/\ (?CHROQOT_errno.errno=CHROQOT_errmno))
/\ (SYS_cwd="SYS_cwd) /\ (SYS_euid="SYS_euid))

geteuid

The function geteuid should return a special system type, uid_t. However
since we did not implement type casting, we approximate it with int. (We discuss
type casting in more detail on page 46.) Several other functions have special return

types defined, and we approximate those similarly.

SYNOPSIS
uid_t geteuid(void);

DESCRIPTION

geteuid() returns the effective user ID of the process.

|- WF_fnp (T)
(Func (Var "geteuid" 0 Int) [] [] NOBody)
(C_Result = ~SYS_euid)

227

setuid

SYNOPSIS
int setuid(uid_t uid);

DESCRIPTION
setuid() sets the real user ID, effective user ID, and/or

saved user ID.

Summary: if setuid() succeeds, the effective user ID is the
uid passed. The real and saved user ID’s are set depending

on complicated conditions.

RETURN VALUE
Upon successful completion, setuid() returns 0. Otherwise it

returns -1 and sets errno.

|- WF_fnp (T)
(Func (Var "setuid" 0 Int) [Var "uid" 0 Int]
[Var "errno" 0 Int; Var "SYS_euid" 0 Int;
Var "SYS_ruid" O Int; Var "SYS_suid" O Int] NOBody)
((C_Result = int_neg 1)
/\ (?SETEUID_errno.errno=SETEUID_errno) \/

(C_Result = 0) /\

(SYS_euid = “uid) /\

((sYs_ruid = ~SYS_ruid) \/ (SYS_ruid = "uid)) /\
((SYS_suid = ~SYS_suid) \/ (SYS_suid = "uid)))

exit

As coded exit () produces a totally undefined state. This allows us to prove

theorems for “filter” conditionals, such as the following.

F{T} if (x < 0) exit(1); {z > 0}

228

The postcondition follows if the test fails. To cover the case that the test succeeds,

we must prove the following.
F{TAz <0} exit(1); {z > 0}

Unfortunately this coding of exit () prevents us from analyzing the final state of

the program formally. It also allows us to prove the following.
F{T} exit(1); y=x {y > 0}
Since we can prove this intermediate.
F {T} exit(1); {z > 0}

Therefore total correctness must be more specific in that the statement not only
terminate, but execution reaches the final statement (reachability). This is anal-
ogous to preventing flawed reasoning that a nonterminating loop establishes any

condition, like below, since - {T} while(1); {F}.
- [T] while(1); vy =x; [y > 0]

Instead exit () should be coded to express a transfer of control to the end of
the program. One possible remedy is to use multiple post conditions, as suggested
in [1] and refined for C in [38]. The exit() call, and thus main() and thttpd
itself, would have F as the “sequence” postcondition and the constraint as the
“exit” postcondition. We would then have to prove that execution actually could
reach the points of interest, as opposed to the unreachable y=x; above, in addition

to partial correctness.

SYNOPSIS

void exit(int status);

DESCRIPTION
exit() terminates the calling process and passes status to

the system for inspection,

|- WF_fnp (T)
(Func (Var "exit" 0 Void) [Var "status" 0 Int] [] NOBody)
(F)

229

localtime

SYNOPSIS

struct tm *localtime(time_t *time)

DESCRIPTION

Correct for the time zone according to the TZ environment

variable and convert to (local static?) tm structure.

RETURN VALUE

return a pointer to the tm structure.

|- WF_fnp (T)
(Func (Var "localtime" 0 (Ptr(Struct "tm")))
[Var "time" 0 (Ptr Int)]
[Var "TZ" 0 (Struct "TZstruct")] NOBody)
(7tsptr.C_Result = tsptr)

strftime

SYNOPSIS
size_t strftime(char *s, size_t maxsize, const char *format,

const struct tm *timeptr)

DESCRIPTION

Convert the contents of a tm structure to a formatted date

and time string.

RETURN VALUE
return the length of the string put in s. If the string
exceeds maxsize, return zero; the contents of s are

indeterminate.

|- WF_fnp (T)

230

(Func (Var "strftime" 0 Int)
[Var "s" 0 (Ptr Char); Var '"maxsize" 0 Int;
Var "format" O (Ptr Char);
Var "timeptr" 0 (Ptr (Struct "tm"))]
[] NOBody)
((strlen(strftimeSpec(format, timeptr)) < maxsize =>
((C_Result=strlen(s)) /\
(strcmp(s,strftimeSpec(format,timeptr))=0))
| (C_Result = 0))
/\ ('index.accessed(s, index) ==> index >= 0 /\

index < maxsize))

time

SYNOPSIS

time_t time(time_t *tloc);

DESCRIPTION

time() returns the value of time in seconds since the Epoch.

If tloc is not a null pointer, the return value is also

assigned to the object to which it points.

RETURN VALUE

Upon successful completion, time() returns the value of time.
Otherwise, a value of (time_t)-1 is returned and errno is set

to indicate the error.

|- WF_fnp (T)

(Func (Var "time" 0 Int) [Var "tloc" 0 (Ptr Int)]

[Var "errno" 0 Int] NOBody)

((C_Result = int_neg 1) /\ (7TIME_errno.errno=TIME_errno) \/
(?some_time.(C_Result = some_time) /\ C_Result > 0 /\

231

("("tloc=NULL)==>(deref "tloc = some_time))))

stat

SYNOPSIS
int stat(const char *path, struct stat *buf);

DESCRIPTION
stat() obtains information about the named file and puts it

in buf.

RETURN VALUE
Upon successful completion, O is returned. Otherwise, -1 is

returned and errno is set to indicate the error.

|- WF_fnp (T)
(Func (Var "stat" 0 Int)
[Var "path" 0 (Ptr Char); Var "buf" O (Ptr (Struct "stat"))]
[Var "errno" 0 Int;
Var "SYS_cwd" 0 (Ptr Char); Var "SYS_root" 0 (Ptr Char)]
NOBody)
(((C_Result = 0) /\
(deref “buf = statSpec “path “SYS_cwd “SYS_root) \/
(C_Result = int_neg 1) /\ (7STAT_errno.errno=STAT_errno)) /\
(SYS_cwd = “SYS_cwd) /\ (SYS_root = “SYS_root))

S_ISREG

This is implemented as a macro, not a function.

SYNOPSIS
int S_ISREG(ushort st_mode);

DESCRIPTION

S_ISREG returns true if the file mode indicates a regular

232

file (vs. directory, pipe, or special).

|- WF_fnp (T)
(Func (Var "S_ISREG" 0 Int) [Var "st_mode" O Int] [] NOBody)
((C_Result = 0) \/ (C_Result = 1))

B.3 Library Calls

The library functions which thttpd uses are limited to those which manip-

ulate strings.

strcat

SYNOPSIS

char *strcat(char *sl1, const char *s2)

DESCRIPTION
Append s2 to the end of si.

RETURN VALUE

return a pointer to sl.

|- WF_fnp (T)

(Func (Var "strcat" 0 (Ptr Char))

[Var "s1" 0 (Ptr Char); Var "s2" 0 (Ptr Char)]

[] NOBody)
((C_Result = ~s1) /\

strEq(strderef “si,

(strcatSpec(“siContents, “s2Contents))) /\

(strderef "s2 = ~“s2Contents))

strncasecmp

SYNOPSIS

int strncasecmp(const char *s1, const char *s2, size_t n)

233

DESCRIPTION
return an integer less than, equal to, or greater than zero,
depending on whether sl is less than, equal to, or greater than
s2. Examine a maximum of n characters. Null pointers are the
same as pointers to empty strings. Characters are folded by

_tolower() prior to comparison.

|- WF_fnp (T)
(Func (Var "strncasecmp" 0 Int)
[Var "s1" 0 (Ptr Char); Var "s2" 0 (Ptr Char); Var "n" 0 Int]
[] NOBody)
((C_Result = strncasecmpSpec((strderef "si),
(strderef ~s2), (n))) /\
~“siContents) /\
~s2Contents))

(strderef “s1

(strderef ~s2

strcpy

SYNOPSIS

char *strcpy(char *sl, const char *s2)

DESCRIPTION
Copy s2 to si.

RETURN VALUE

returns a pointer to sl.

|- WF_fnp (T)
(Func (Var "strcpy" 0 (Ptr Char))
[Var "s1" 0 (Ptr Char); Var "s2" 0 (Ptr Char)]
[] NOBody)
((C_Result = ~s1) /\

234

strEq(strderef “si,
(strcpySpec(“siContents, “s2Contents))) /\
(strderef "s2 = ~“s2Contents))

strncpy

SYNOPSIS

char *strncpy(char *sl, const char *s2, size_t n)

DESCRIPTION
Copy exactly n character of s2 to sl.

RETURN VALUE

returns a pointer to sl.

val logn = mk_var{Name=""n", Ty=(==‘:num‘==)};

|- WF_fnp (T)
(Func (Var "strncpy" 0 (Ptr Char))
[Var "s1" 0 (Ptr Char); Var "s2" 0 (Ptr Char); Var "n" 0 Int]
[] NOBody)
((C_Result = ~s1) /\
strEq(strderef “si,
(strncpySpec(“s2Contents, “n))) /\
(strderef "s2 = ~“s2Contents))

strlen

SYNOPSIS

size_t strlen(const char *s)

DESCRIPTION

return the number of characters in s.

235

|- WF_fnp (T)
(Func (Var "strlen" O Int)
[Var "s" 0 (Ptr Char)]
[] NOBody)
(C_Result = strlenSpec(strderef "s))

236

APPENDIX C

THE SECURE WORLD WIDE WEB SERVER CODE

This appendix has the code for the latest version of thttpd. It differs

slightly from the code which we first verified in that it

1.

has alarm() calls to limit waits for input and output,
defines some values for Unix System V compiling,

declares variables globally rather than locally,

. records more information in log file entries (such as the name and process ID

of the logging process),

. exits with a zero status (rather than a one status) upon error,

checks that files are owned by a specific user (WWWAID) rather than the

process owner, and

checks for “get” requests character by character rather than using

strncasecmp ().

It took us about four hours to convert the new code to AST using the

translator including the manual pre- and postprocessing described in Sect. A.1

and time to extend the C parser. Reproving logfile() took about two hours,

including the time to write axioms for the three new OS calls it makes.

These program listings have been slightly altered to fit the page width. The

current source is available through http://all.net/ which also demonstrates and

uses this server. Licensing information is also available from that site.

237

/*(©1995, Management Analytics (all.net) - ALL RIGHTS RESERVED */

#ifdef SYSV
#define _IFREG 0100000 /* regular */
#define _IFMT 0170000 /* type of file */
#define S_ISREG(m) (((m)&_IFMT) == _IFREG)
#endif
#define ERRORLINE "The requested document has moved to
here.<P>\n"
#define REDIRECT "Location: http://pc31l.ca.sandia.gov/\n"
#define WWWUID 150
#define WWWAID 501
#define WWWDIR "/u/fc/wuw"
#define WWWDefaultFile "/top.html"
#define WWWlog "/log"
#define Ktime 20
#define IO0time 120
int CHECKUSER=1;int DOCHROOT=1;

#define BUFSIZE 4096
#define MAXSIZE 2048
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <time.h>
#include <fcntl.h>
#include <syslog.h>
#define LOG2(x,y) {F=fopen(WWWlog,"a+");
if (F '= NULL) {logfile(F);fprintf(F,x,y);} fclose(F);}
#define LOG3(x,y,z) {F=fopen(WWWlog,"a+");
if (F != NULL) {logfile(F);fprintf(F,x,y,z);} fclose(F);}
#define LOG4(x,y,z,w) {F=fopen(WWWlog,"a+");
if (F != NULL) {logfile(F);fprintf(F,x,y,z,w);} fclose(F);}

238

char 1line[BUFSIZE] ,name[BUFSIZE],bs1[BUFSIZE],bs2[BUFSIZE],
bs3[BUFSIZE],timestamp[64],logline[BUFSIZE] ,remotehost [BUFSIZE],
remoteuser[BUFSIZE], daemonname[BUFSIZE] ,remotedatal[BUFSIZE];
struct stat buf; FILE *F;int i,n,staterr;

time_t *tloc;time_t t;

void logfile(F)

FILE *F;

{alarm(I0time) ;t=time(NULL);

#ifdef SYSV

cftime(timestamp, "%Y/%m/%d %T", localtime(&t));

#else

strftime(timestamp, 20, "%Y/%m/%d %T", localtime(&t));

#endif

fprintf(F,"%s %s %s %s %s %d %d ",remotehost,remoteuser,daemonname,

remotedata,timestamp,getpid(),getppid());alarm(0);}

error(s) /* simulate a 302 - document moved */
char *s;

{alarm(I0time) ;printf ("HTTP/1.0 302 Found\n");

printf("Server: ManAl/0.1\n") ;printf("MIME-version: 1.0\n");
printf (REDIRECT) ;printf("Content-type: text/html\n");

printf ("<HEAD><TITLE>Document moved</TITLE></HEAD>\n");

printf ("<BODY><H1>Document moved</H1>\n") ;printf (ERRORLINE) ;
printf (" (%s) </BODY>\n",s);

alarm(I0time) ;LOG4("Error:¥%s - %s %s\n",s,bsl,name);exit(0);}

239

void cat(s)

char s[];

{alarm(I0time) ;i=open(s,0); while ((n=read(i,bs2,MAXSIZE)) > 0)
{alarm(I0time) ;write(1,bs2,n);}close(i);alarm(0);}

fetch() /* if www owns it, it can be put - else, forget it */
{alarm(I0time) ;staterr=stat(name,&(buf));alarm(0);
if (staterr '= 0) error("Can’t stat file"); /* can’t stat the
file - die */
if (0 == S_ISREG(buf.st_mode)) error("Can’t fetch directories");
if (0 '= (S_IXOTH & buf.st_mode)) error("Can’t fetch executables");
if (CHECKUSER==1) if (buf.st_uid !'= WWWAID)
error("Not owned by WWW Admin"); /* don’t own it - die */

if (0 '= (S_IROTH & buf.st_mode))

{cat(name); LOG2("cat %s\n",name);exit(0);} /* Send itx*/

error("Access Denied");}

main(argc,argv,envp)
int argc; char *argv[],*envpl[];
{alarm(Ktime);if (0 '= chdir(WWWDIR))
error("Cannot change to WWW directory");
if (DOCHROOT == 1) if (chroot(".") !'= 0)
error("Cannot change root directory to .");
if (0 '= setuid (WWWUID))
error("setUID failed"); /* become user www or die */
if (arge>1) strncpy(remotehost,argv[1],MAXSIZE);
else strcpy(remotehost,"nowhere");
if (arge>2) strncpy(remoteuser,argv[2] ,MAXSIZE);
else strcpy(remoteuser,'nobody");
if (arge>3) strncpy(daemonname,argv[4] ,MAXSIZE);
else strcpy(daemonname,'nodaemon");

if (arge>4) strncpy(remotedata,argv[3],MAXSIZE);

240

else strcpy(remotedata,''nodata");
remotehost [MAXSIZE]=’\0’ ;remoteuser [MAXSIZE]='\0’;
remotedata[MAXSIZE]=’\0’;daemonname [MAXSIZE]="\0’;
alarm(I0time) ;read(0,line,MAXSIZE); 1line[MAXSIZE]=’\0’;
sscanf(line, "%s %s %s", bsl, name, bs2);
if ((name[0] '= °\0’) && (namel[strlen(name)-1] == ’\r’))
name[strlen(name)-1]=\0";
if ((name[0]==’/") && ((name[1]==’\0’) || (name[1]==’ ’)))
strcpy(name,WWWDefaultFile);
if (DOCHROOT!'=1)
{strcpy(bs3,WWWDIR) ;strcat(bs3,name) ; strcpy(name,bs3);}
alarm(0);
if (((bsi[0]l=="g’) || (bs1[0]=="G’)) &&
((bsi[i]=="e’) || (bsi[1]=="E’)) &&
((bs1[2]=="t’) || (bs1[2]=="T"))) fetch(); /* get */

error ("Unknown request"); /* all other requests fail */}

241

1]

2]

7]

BIBLIOGRAPHY

Michael A. Arbib and Suad Alagi¢. Proof rules for gotos. Acta Informatica,
11(2):139-148, 1979.

ARIANE 5, Flight 501 Failure, Report by the Inquiry Board. http://www.
esrin.esa.it /htdocs/tidc/Press/Press96/arianebrep.html, July 1996. (accessed
16 January 1998).

Ariane 5 report details software design errors. Awviation Week, pages 79-81,

September 1996.

John Barnes. High Integrity Ada: The SPARK Approach. Addison-Wesley,
1997.

Paul E. Black, Kelly M. Hall, Michael D. Jones, Trent N. Larson, and Phillip J.
Windley. A brief introduction to formal methods. In Proceedings of the
IEEE 1996 Custom Integrated Clircuits Conference (CICC ’96), pages 377—
380. IEEE, 1996.

Paul E. Black and Phillip J. Windley. Automatically synthesized term deno-
tation predicates: A proof aid. In E. Thomas Schubert, Phillip J. Windley,
and James Alves-Foss, editors, Higher Order Logic Theorem Proving and Its
Applications (HOL ’95), volume 971 of Lecture Notes in Computer Science,
pages 46-57. Springer-Verlag, 1995.

Paul E. Black and Phillip J. Windley. Verifying resilient software. In Ralph H.
Sprague, Jr., editor, Proceedings of the Thirtieth Hawai% International Con-
ference on System Sciences (HICSS-30), volume V, pages 262-266. IEEE

Computer Science Press, January 1997.

Paul E. Black and Phillip J. Windley. Formal verification of secure programs
in the presence of side effects. In Ralph H. Sprague, Jr., editor, Proceedings
of the Thirty-First Annual Hawaii International Conference on System Sci-
ences (HICSS-81), volume 111, pages 327-334. IEEE Computer Science Press,
January 1998.

242

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[19]

Hans-Juergen Boehm. Side effects and aliasing can have simple axiomatic

descriptions. ACM Transactions on Programming Languages and Systems,

7(4):637-655, October 1985.

J. R. Burch, E. M. Clarke, K. L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 10%2° states and beyond. In Proceedings of the
ACM/SIGDA International Workshop in Formal Methods in VLSI Design.
ACM, January 1991.

Frederick B. Cohen. A secure world-wide-web daemon. Computers & Security,

15(8):707-724, 1996.

Graham Collins. A proof tool for reasoning about functional programs. In

Joakim von Wright, Jim Grundy, and John Harrison, editors, Theorem Prov-
ing in Higher Order Logics (TPHOLs ’96), volume 1125 of Lecture Notes in
Computer Science, pages 109-124. Springer-Verlag, 1996.

R. J. Cunningham and M. E. J. Gilford. A note on the semantic definition of
side effects. Information Processing Letters, 4(5):118-120, February 1976.

Paul Curzon. Deriving correctness properties of compiled code. In Luc Claesen
and Michael Gordon, editors, Higher Order Logic Theorem Proving and Its
Applications, pages 97-116. IFIP, Elsevier Science Publishers B.V., 1992.

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social pro-
cesses and proofs of theorems and programs. Communications of the ACM,

22(5):271-280, May 1979.

Ben L. Di Vito and Larry W. Roberts. Using formal methods to assist in
the requirements analysis of the space shuttle gps change report. Contractor

Report 4752, NASA Langley Research Center, August 1996.
Edsger W. Dijkstra. A Discipline of Programmang. Prentice-Hall, Inc., 1976.

Michael Dyer. The Cleanroom Approach to Quality Software Development.
John Wiley & Sons, 1992.

J. Kelly Flanagan. personal communication, February 1998.

243

[20]

[21]

[22]

[24]

[25]

[26]

[29]

Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, volume 19 of Proceedings of Sym-
posia in Applied Mathematics, pages 19-32. American Mathematical Society,
1967.

Michael J. C. Gordon. Programming Language Theory and its Implementation.
Prentice-Hall, Inc., 1988.

Michael J. C. Gordon and Tom F. Melham, editors. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge University
Press, 1993.

David Gries and Gary Levin. Assignment and procedure call proof rules. ACM
Transactions on Programming Languages and Systems, 2(4):564-579, October
1980.

Yuri Gurevich. Evolving algebras: An attempt to discover semantics. In

G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical Com-

puter Science, pages 266-292. World Scientific, 1993.

Samuel P. Harbison and Guy L. Steele, Jr. C, A Reference Manual. Prentice-
Hall, Inc., 1991.

William L. Harrison, Karl N. Levitt, and Myla Archer. A HOL mechanization
of the axiomatic semantics of a simple distributed programming language.
In Luc Claesen and Michael Gordon, editors, Higher Order Logic Theorem
Proving and Its Applications, pages 117-126. IFIP, Elsevier Science Publishers

B.V., 1992.
I. Hayes. Specification Case Studies. Prentice Hall, 1993.

Hewlett-Packard Company. HP-UX on-line manual, HP-UX Release 9.0, Au-
gust 1992.

Hewlett-Packard Company. HP-UX on-line manual, HP-UX Release 10.10,
November 1995.

244

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[40]

C. A. R. Hoare. An axiomatic basis for computer programming. Communi-

cations of the ACM, 12(10):576-583, October 1969.
John Hoffman. personal communication, April 1997.

Peter Vincent Homeier. Trustworthy Tools for Trustworthy Programs: A Me-
chanically Verified Verification Condition Generator for the Total Correctness
of Procedures. PhD thesis, University of California, Los Angeles, 1995.

Tomasz Kowaltowski. Axiomatic approach to side effects and general jumps.

Acta Informatica, 7:357-360, 1977.

Zohar Manna and Richard Waldinger. Studies in Automatic Programming

Logic. Artificial Intelligence Series. Elsevier North-Holland, Inc., 1977.

Zohar Manna and Richard Waldinger. The logic of computer programming.
IEEE Transactions on Software Engineering, SE-4(3):199-229, May 1978.

W. Douglas Maurer. A minimization theorem for verification conditions. In
Proc. 8th International Conference on Computing and Automation (ICCI ’96),
1996.

Michael Norrish. Derivation of verification rules for C from operational def-
initions. In Joakim von Wright, Jim Grundy, and John Harrison, editors,

Supplementary Proceedings of the 9th International Conference on Theorem

Proving in Higher Order Logics (TPHOLs ’96), pages 77-94, 1996.

Michael Norrish. An abstract dynamic semantics for C. Technical Report 421,
Computer Laboratory, University of Cambridge, May 1997.

Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: a prototype
verification system. In Deepkar Kapur, editor, 11th Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752. Springer Verlag, June 1992.

Lawrence C. Paulson. ML for the Working Programmer. Cambridge Univer-
sity Press, 1993.

245

[41] J. C. Reynolds. The Craft of Programming. Prentice Hall, 1981.

[42] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach, pages 416-417. Prentice Hall Series in Artificial Intelligence. Prentice-
Hall, Inc., 1995.

[43] Phillip J. Windley. Documentation of the records library. http://lal.cs.byu.
edu/lal/holdoc/library /records/records.html, 1993. (accessed 20 January
1998).

Axiomatic Semantics Verification of a Secure Web Server

Paul E. Black

Department of Computer Science

Ph.D. Degree, February 1998

ABSTRACT

We formally verify that a particular web server written in C is secure,
that is, a remote user cannot get files he shouldn’t or change the server’s files.
Although the code was thoroughly reviewed and tested, the verification located
some heretofore unknown behavioral weaknesses.

To verify this code, we invented new inference rules for reasoning about
expressions with side effects, which occur often in C. We also formalized aspects
of Unix file systems and processes, operating system and library calls, parts of the
C languages, and security properties.

We propose an architecture for a software verification system which
could be widely useful, and argue that our proof demonstrates that real world
software written in real world languages can be verified.

COMMITTEE APPROVAL:

Phillip J. Windley Douglas M. Campbell
Committee Chairman Committee Member
J. Kelly Flanagan William A. Barrett
Committee Member Committee Member
Parris K. Egbert Scott N. Woodfield
Committee Member Graduate Coordinator

247

